首页> 外文OA文献 >Wavelets and multirate filter banks : theory, structure, design, and applications
【2h】

Wavelets and multirate filter banks : theory, structure, design, and applications

机译:小波和多速率滤波器组:理论,结构,设计和应用

摘要

Wavelets and filter banks have revolutionized signal processing with their ability to process data at multiple temporal and spatial resolutions. Fundamentally, continuous-time wavelets are governed by discrete-time filter banks with properties such as perfect reconstruction, linear phase and regularity. In this thesis, we study multi-channel filter bank factorization and parameterization strategies, which facilitate designs with specified properties that are enforced by the actual factorization structure. For M-channel filter banks (M =/> 2), we develop a complete factorization, M-channel lifting factorization, using simple ladder-like structures as predictions between channels to provide robust and efficient implementation; perfect reconstruction is structurally enforced, even under finite precision arithmetic and quantization of lifting coefficients. With lifting, optimal low-complexity integer wavelet transforms can thus be designed using a simple and fast algorithm that incorporates prescribed limits on hardware operations for power-constrained environments. As filter bank regularity is important for a variety of reasons, an aspect of particular interest is the structural imposition of regularity onto factorizations based on the dyadic form uvt. We derive the corresponding structural conditions for regularity, for which M-channel lifting factorization provides an essential parameterization. As a result, we are able to design filter banks that are exactly regular and amenable to fast implementations with perfect reconstruction, regardless of the choice of free parameters and possible finite precision effects. Further constraining u = v ensures regular orthogonal filter banks,
机译:小波和滤波器组以其在多种时间和空间分辨率下处理数据的能力,彻底改变了信号处理。从根本上说,连续时间小波由离散时间滤波器组控制,这些滤波器组具有诸如完美重构,线性相位和规则性之类的特性。在本文中,我们研究了多通道滤波器组分解和参数化策略,这些策略有助于设计具有特定属性的设计,这些设计由实际的分解结构强制执行。对于M通道滤波器组(M = /> 2),我们开发了完整的因式分解,即M通道提升因式分解,使用简单的阶梯状结构作为通道之间的预测,以提供强大而有效的实现;即使在有限精度算术和提升系数的量化下,也要在结构上实施完美的重构。通过提升,可以使用简单而快速的算法设计最佳的低复杂度整数小波变换,该算法结合了针对功率受限环境的硬件操作的规定限制。由于滤波器组的正则性由于多种原因而很重要,因此特别感兴趣的一个方面是将正则性的结构强加于基于二进式uvt的因式分解上。我们推导了相应的结构规律性条件,为此,M通道提升因子分解提供了基本的参数化。结果,我们能够设计出完全规则的滤波器组,并且可以通过完美的重构实现快速实现,而无需考虑自由参数的选择和可能的有限精度效果。进一步约束u = v可确保规则的正交滤波器组,

著录项

  • 作者

    Chen Ying-Jui 1972-;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号