首页> 外文OA文献 >Plasmonic silicon Schottky photodetectors: the physics behind graphene enhanced internal photoemission
【2h】

Plasmonic silicon Schottky photodetectors: the physics behind graphene enhanced internal photoemission

机译:等离子体硅肖特基光电探测器:石墨烯背后的物理特性增强了内部光电发射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene (∼πα=2.3%). Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond.
机译:最近的实验表明,通过在两种介质之间引入单层石墨烯,可以显着增强从金属到硅的等离子体辅助内部光发射。尽管在未掺杂的石墨烯单层中吸收受限(〜πα= 2.3%)。在这里,我们提出了一种物理模型,其中表面等离子体激元极化子通过增强沿界面的场来增强单层石墨烯的吸收。石墨烯中相对较长的弛豫时间允许载体多次尝试克服肖特基势垒并渗透到半导体中。界面紊乱对于克服内部光发射过程中的动量失配至关重要。我们的结果表明,在合理的实验假设下,可以获得百分之几十的量子效率。这种见解可以为电信范围及以后的紧凑,高效的基于硅的检测器的实现铺平道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号