首页> 外文OA文献 >Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance
【2h】

Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance

机译:用二氧化碳生产乙酸盐的微生物电合成:创新的生物催化剂,可提高性能

摘要

Production of chemicals has significant influence on the emission of greenhouse gases (GHG) in particular carbon dioxide (CO2), thereby contributing to the climate changes of our planet. There is a general acceptance that we need to reduce the emission of GHG on a global level to cope with these changes. Production of chemicals utilization of CO2 as feedstock represents a sustainable alternative to many fossil derived products, which are non-renewable and have a strong negative impact on the environment. Microbial electrosynthesis (MES) is an emerging technique utilizing electrical energy for reduction of CO2. In a MES reactor, microbial catalysts are acquiring electrons from an externally powered cathode to transform CO2 into multi-carbon chemical commodities. The direct acquisition of electrons enables the use of multiple renewable electricity-sources including solar, wind, biochemical oxidation processes, or surpluses electricity from the power grid. Although MES is a promising approach, it is restricted by a low electron transfer rate from the cathode to a microbe as well as the CO2 reduction rate is insufficient for scaling up. The main objective of the present study was to increase the overall productivity of MES by identifying more efficient electroautotrophicmicrobial catalysts and developing better cathode materials. The genus Sporomusa is known for its abilities to convert CO2 intoacetate by MES. This study investigated the performance in MES of selected species of the Sporomusa genus including; Sporomusa ovata DSM-2662, Sporomusa ovata DSM-2663, Sporomusa ovata DSM-3300, Sporomusa acidovorans, Sporomusa malonica, and Sporomusa aerivorans. In which, S. ovata DSM-2663 was identified the most productive MES microbial catalyst among the tested group. Furthermore, the study developed and tested novel cathodematerials for application in MES including three-dimensional graphene functionalized carbon felt, freestanding and flexible graphene paper, and copper-reduced graphene oxide composite. When the copper-reduced graphene oxide composite electrode was used as the cathode for S. ovata-driven MES, acetate production rates as well as current densitywere significantly increased to1708.3 ± 333.3 mmol d-1 m-2 and -20.4 ± 1.0 A m-2 which is almost 21.5 fold higher acetate production compared to unmodified copper foam electrode. By identifying a better MES microbial catalyst and developing novel composite cathodes the electron transfer during MES as well as CO2 reduction into acetate was significant improved.
机译:化学药品的生产对温室气体(GHG)的排放,尤其是二氧化碳(CO2)的排放有重大影响,从而加剧了地球的气候变化。人们普遍认为,我们需要在全球范围内减少温室气体的排放,以应对这些变化。化工生产中以二氧化碳为原料,是许多化石衍生产品的可持续替代产品,这些产品是不可再生的,并且对环境具有严重的负面影响。微生物电合成(MES)是一种利用电能来减少CO2的新兴技术。在MES反应器中,微生物催化剂正在从外部供电的阴极获取电子,以将CO2转化为多碳化学商品。直接获取电子可以使用多种可再生电源,包括太阳能,风能,生化氧化过程或来自电网的多余电力。尽管MES是一种有前途的方法,但它受到从阴极到微生物的低电子转移速率的限制,并且CO 2的还原速率不足以扩大规模。本研究的主要目的是通过鉴定更有效的自养微生物催化剂并开发更好的阴极材料来提高MES的整体生产率。孢子虫属因其能够将MES将CO2转化成乙酸盐而闻名。这项研究调查了孢子种的选定种在MES中的表现。卵形孢子虫DSM-2662,卵形孢子虫DSM-2663,卵形孢子虫DSM-3300,酸孢形孢子,麦芽孢形孢子和无食孢子形孢子。其中,卵形链球菌DSM-2663被鉴定为测试组中产量最高的MES微生物催化剂。此外,该研究开发并测试了用于MES的新型阴极材料,包括三维石墨烯功能化碳毡,独立式和柔性石墨烯纸以及铜还原的氧化石墨烯复合材料。当将还原铜的氧化石墨烯复合电极用作S.ovata驱动的MES的阴极时,醋酸盐的生产率和电流密度显着提高至1708.3±333.3 mmol d-1 m-2和-20.4±1.0 A m-2与未改性的泡沫铜电极相比,其乙酸盐产量几乎高21.5倍。通过鉴定出更好的MES微生物催化剂并开发新型的复合阴极,MES期间的电子转移以及将CO2还原为乙酸盐得到了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号