首页> 外文OA文献 >Modeling of optical fields in laser microcavities using a modal method
【2h】

Modeling of optical fields in laser microcavities using a modal method

机译:用模态法建模激光微腔中的光场

摘要

A compact microlaser featuring a high-Q cavity with a low mode volume V is of interest as it allows for a near-unity factor, thresholdless lasing and reduced energy consumption. However, whereas a high Q and a low V are easily achieved separately, combining the two poses a challenge. Furthermore, the cavity should allow for efficient out-coupling of light, which in low-V systems represents an additional design challenge. Engineering a microcavity meeting these demands requires a in-depth physical under-standing of the governing physical mechanisms of the system. In the low-V cavity, a central mechanism limiting the Q factor is the poor modal overlap between the cavity Bloch mode and the mirror Bloch mode. Also, the strong connement will generally lead to highly divergent far field patterns and thus low collection efficiency. In this scenario, Bloch-wave engineering [1] and the introduction of adiabatic transitions emerge as powerful design tools to control the optical mode.In the modal method, the eld is expanded on the eigenmodes of z-invariant layers and on the Bloch modes of periodic sections. Using mode matching at the interfaces, the method gives direct access to reection and transmission coecients describing the scattering of the optical modes, and the method is thus highly suitable for Bloch-wave engineering of the low-V cavity. As example we have used the modal method to propose the high-Q submicron-diameter micropillar geometry implementing an adiabatic cavity design as illustrated in Fig. 1, which recently lead to the experimental demonstration of high- lasing in fabricated devices with factors exceeding 0.5. [2]
机译:具有高Q腔和低模体积V的紧凑型微型激光是值得关注的,因为它允许接近统一的因子,无阈值激光和降低的能耗。然而,尽管容易分别实现高Q值和低V值,但是将两者结合起来是一个挑战。此外,腔体应允许有效的光输出耦合,这在低V系统中是另外的设计挑战。设计满足这些要求的微腔需要对系统的控制物理机制有深入的物理了解。在低V腔中,限制Q因子的中心机制是腔Bloch模式和镜像Bloch模式之间的模态重叠差。而且,强烈的要求通常会导致高度分散的远场模式,从而降低收集效率。在这种情况下,Bloch-wave工程[1]和绝热过渡的引入成为控制光学模式的强大设计工具。在模态方法中,在z不变层的本征模和Bloch模上扩展了场。定期部分。使用接口处的模式匹配,该方法可直接访问描述光学模式散射的建立和传输系数,因此该方法非常适合于低V腔的Bloch-wave工程。作为示例,我们使用模态方法提出了实现绝热腔设计的高Q亚微米直径微柱几何结构,如图1所示,这最近导致了实验证明了制造的器件中的高激射具有超过0.5的因数。 [2]

著录项

  • 作者

    Gregersen Niels;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号