首页> 外文OA文献 >Fractional Coverings, Greedy Coverings, and Rectifier Networks
【2h】

Fractional Coverings, Greedy Coverings, and Rectifier Networks

机译:分数覆盖,贪婪覆盖和整流网络

摘要

A rectifier network is a directed acyclic graph with distinguished sources and sinks; it is said to compute a Boolean matrix M that has a 1 in the entry (i,j) iff there is a path from the j-th source to the i-th sink. The smallest number of edges in a rectifier network that computes M is a classic complexity measure on matrices, which has been studied for more than half a century.We explore two techniques that have hitherto found little to no applications in this theory. They build upon a basic fact that depth-2 rectifier networks are essentially weighted coverings of Boolean matrices with rectangles. Using fractional and greedy coverings (defined in the standard way), we obtain new results in this area.First, we show that all fractional coverings of the so-called full triangular matrix have cost at least n log n. This provides (a fortiori) a new proof of the tight lower bound on its depth-2 complexity (the exact value has been known since 1965, but previous proofs are based on different arguments). Second, we show that the greedy heuristic is instrumental in tightening the upper bound on the depth-2 complexity of the Kneser-Sierpinski (disjointness) matrix. The previous upper bound is O(n^{1.28}), and we improve it to O(n^{1.17}), while the best known lower bound is Omega(n^{1.16}). Third, using fractional coverings, we obtain a form of direct product theorem that gives a lower bound on unbounded-depth complexity of Kronecker (tensor) products of matrices. In this case, the greedy heuristic shows (by an argument due to Lovász) that our result is only a logarithmic factor away from the "full" direct product theorem. Our second and third results constitute progress on open problem 7.3 and resolve, up to a logarithmic factor, open problem 7.5 from a recent book by Jukna and Sergeev (in Foundations and Trends in Theoretical Computer Science (2013)).
机译:整流器网络是有向无环图,具有不同的源和汇。如果存在从第j个源到第i个接收器的路径,则据说要计算在条目(i,j)中具有1的布尔矩阵M。整流器网络中计算M的边的最小数量是对矩阵的经典复杂性度量,已经研究了半个多世纪。我们探索了两种迄今为止在该理论中几乎没有应用的技术。他们建立在一个基本事实上,即深度2整流器网络实际上是具有矩形的布尔矩阵的加权覆盖。使用分数和贪婪覆盖(以标准方式定义),我们在该领域获得了新的结​​果。首先,我们证明了所谓的全三角矩阵的所有分数覆盖至少具有n log n的代价。这为(深度)深度2复杂度的严格下限提供了新的证明(自1965年以来就知道确切的值,但是以前的证明基于不同的论点)。其次,我们证明了贪婪的启发式方法有助于收紧Kneser-Sierpinski(不相交)矩阵的depth-2复杂度的上限。先前的上限是O(n ^ {1.28}),我们将其改进为O(n ^ {1.17}),而最著名的下限是Omega(n ^ {1.16})。第三,使用分数覆盖,我们获得了直接积定理的一种形式,该定理给出了矩阵的Kronecker(张量)积的无界深度复杂度的下界。在这种情况下,贪婪的启发式显示(通过Lovász的论证)表明,我们的结果只是远离“完全”直接乘积定理的对数因子。我们的第二和第三项结果构成了关于开放式问题7.3的进展,并通过对数因子从Jukna和Sergeev的最新著作(《理论计算机科学的基础与趋势》(2013年))中解决了开放式问题7.5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号