首页> 外文OA文献 >Hox genes and tonotopic organization of auditory brainstem circuits
【2h】

Hox genes and tonotopic organization of auditory brainstem circuits

机译:Hox基因和听觉脑干电路的tonotopic组织

摘要

The formations of functional neuronal circuits are achieved through multiple developmental processes, beginning at neuronal progenitor specification and establishment of topographic connectivity to refinement of topographic circuits and synaptic maturation of the circuits. Though, most of the underlying neuronal connectivity in different circuits have been identified, the molecular mechanisms guiding the establishment and refinement of their input-output topographic relay, are largely unknown. Refinement and maturation of topographic connectivity is essential in the visual system (Huberman et al., 2008), the somatosensory system (Fox et al., 2005) as well as in the auditory system (Kandler et al., 2009). During my Ph.D, I studied two different neuronal circuits, one addressing the development of tonotopic organization in auditory sensory circuits; and the other unraveling the neuroanatomical pathways in whisker related sensori-motor interactions and whisker movements.udThe auditory system has a unique topographic organization, such that all auditory nuclei represent a gradient of frequencies and two neighboring bands of neurons respond to neighboring sound frequencies. Such an organization with an orderly representation of frequencies is called tonotopy and tonotopic organization is essential for efficient discrimination of sound frequencies (Kandler et al., 2009). The tonotopic organization of the auditory nuclei are considered to be developmentally hardwired, however, elaborate processes of refinement are essential to achieve the precision of the adult tonotopic circuits (Kandler et al., 2009; Clause et al., 2014). The brainstem auditory circuits, which consist of the cochlear nucleus (CN) and the superior olivary complex (SOC) are also tonotopically organized. The CN is further subdivided into the anterior ventral cochlear nucleus (AVCN), posterior ventral cochlear nucleus (PVCN) and the dorsal cochlear nucleus (DCN). The AVCN arises from rhombomeric progenitor zones, r2-r3, which are characterized by the combinatorial expression of Hox paralogous group 2 genes (Hox PG2), Hoxa2 and Hoxb2 (Narita and Rijli, 2009; Di Bonito et al., 2013). Hox genes are determinants of topographic information and influence topographic organization as well as topographic input-output connectivity of several hindbrain nuclei (Philippidou and Dasen, 2013). In our present study, we investigate the role of Hox PG2 genes in the tonotopic organization of the brainstem auditory circuits, with focus on AVCN. udOur results suggest an essential role of Hox PG2 genes in the maturation and refinement of the tonotopic organization and connectivity of the AVCN. Using conditional deletions of Hox PG2 genes targeting the post-mitotic bushy cells in the AVCN, we show that the gross tonotopic organization of the AVCN, which is established very early during development, is unaffected. However, processes involving refinement of the tonotopic organization are impaired in the absence of the Hox PG2 genes. In the Hox PG2 mutants, peripheral afferents of the spiral ganglion (SG) neurons target less precisely, resulting in a broader spread of targeting bands in the AVCN. These aberrant SG projections are not developmentally refined and are still maintained in the adult mutants as observed in the auditory pure tone stimulation experiments. Pure tone auditory stimulations activate broader bands with larger number of activated neurons in the mutants. The broadening of the activated bands leads to reduced separation (also overlap) between bands of activated neurons responding to two neighboring sound frequencies. This results in a decreased resolution of the tonotopic organization in the AVCN, affecting sound frequency discrimination in the Hox PG2 conditional mutants. In an auditory tone based discriminating fear conditioning experiment, the Hox PG2 mutants are unable to distinguish between two close sound frequencies, compared to the controls. To explore the molecular mechanisms underlying the described phenotype, we performed a transcriptome analysis on the mutant AVCN bushy cells. Our results showed a deregulation of acvitity associated genes and synapse associated genes in the absence of Hox PG2 genes. Thus, we looked into the development of synapses between the SG afferents and the AVCN bushy cells, the giant Endbulb of Held synapses. The Endbulb of Held synapse maturation occurs in an activity dependent manner involving elimination of multi-axonal inputs to retain 1-2 major inputs, in the weeks after hearing onset. Our analysis showed that synaptic maturation of the Endbulb synapses were affected and the mutant Endbulbs receive higher numbers of SG axonal inputs. Thus, our results show that conditional deletion of Hox PG2 genes in specific subsets of AVCN neurons affects several late developmental refinement processes, culminating in loss of resolution of tonotopic precision and reduction in sound frequency discrimination.udIn addition to the above described study, this thesis manuscript also includes another study (currently in press, European Journal of Neuroscience) done in collaboration with Varun Sreenivasan from Prof. Carl C. Petersen’s group, EPFL, Switzerland. In this study, we map the neuronal pathways connecting cortical inputs to hindbrain facial motor nucleus (FMN), driving peripheral facial muscles in the mouse whisker system. We investigate how cortical inputs from motor cortex (M1) and somatosensory cortex (S1) interact with premotor and motor nuclei in the hindbrain, while driving different whisker movements. We identify distinct subsets of premotor nuclei associated with whisker retraction and whisker protraction, which receive differential cortical inputs from S1 and M1, respectively. Our results suggest two parallel pathways through which M1 driven whisker protraction and S1 driven whisker retraction are actuated. Thus, in this study, we further the understanding of the anatomical pathways underlying whisker movements. ud
机译:功能性神经元回路的形成是通过多种发育过程来实现的,这些过程从神经元祖细胞规范开始,到建立地形连通性以完善地形回路和突触成熟。尽管已经确定了不同回路中大多数潜在的神经元连通性,但是指导其输入输出拓扑中继的建立和完善的分子机制尚不清楚。在视觉系统(Huberman等,2008),体感系统(Fox等,2005)以及听觉系统(Kandler等,2009)中,地形连接的完善和成熟是必不可少的。在攻读博士学位期间,我研究了两种不同的神经元回路,一种针对听觉感觉回路中色调组织的发展。 ud听觉系统具有独特的地形组织,以使所有听觉核代表一个频率梯度,并且两个相邻的神经元带对相邻的声频做出响应。这种具有频率有序表示的组织称为音调拓扑,音调组织对于有效区分声音频率必不可少(Kandler等,2009)。听觉核的听觉异位组织被认为在发展上是硬连线的,但是,精巧的精炼过程对于实现成人听觉异位循环的精度至关重要(Kandler等,2009; Clause等,2014)。脑干听觉回路也由耳蜗核(CN)和上橄榄叶复合体(SOC)组成。 CN进一步细分为前腹侧耳蜗核(AVCN),后腹侧耳蜗核(PVCN)和背侧耳蜗核(DCN)。 AVCN起源于菱形祖细胞区r2-r3,其特征在于Hox旁系2基因(Hox PG2),Hoxa2和Hoxb2的组合表达(Narita和Rijli,2009; Di Bonito等人,2013)。 Hox基因是地形信息的决定因素,并影响地形组织以及几个后脑核的地形输入-输出连通性(Philippidou和Dasen,2013)。在我们目前的研究中,我们研究了Hox PG2基因在脑干听觉回路的tonotopic组织中的作用,重点是AVCN。 ud我们的结果表明,Hox PG2基因在成熟和完善Tonotopic组织和AVCN的连通性中起着至关重要的作用。使用针对AVCN中的有丝分裂后的丛生细胞的Hox PG2基因的条件删除,我们显示AVCN的总断层组织不受影响,该组织在发育中很早就建立了。但是,在没有Hox PG2基因的情况下,涉及精炼色调组织的过程受到损害。在Hox PG2突变体中,螺旋神经节(SG)神经元的周围传入神经靶向的精度较低,从而导致AVCN中靶向带的分布更加广泛。如听觉纯音刺激实验中所观察到的那样,这些异常的SG预测没有得到发展完善,并且仍保持在成年突变体中。纯音听觉刺激在突变体中激活具有更大数量激活神经元的更宽频带。激活带的加宽导致响应两个相邻声频的激活神经元带之间的分离减少(也重叠)。这导致AVCN中音调组织的分辨率降低,从而影响了Hox PG2条件突变体中的声频辨别力。在基于听觉的辨别恐惧条件实验中,与对照相比,Hox PG2突变体无法区分两个接近的声音频率。为了探索所述表型的潜在分子机制,我们对突变的AVCN丛生细胞进行了转录组分析。我们的研究结果表明,在没有Hox PG2基因的情况下,空化相关基因和突触相关基因的失控。因此,我们研究了SG传入神经与AVCN丛状细胞之间的突触的发展。举行突触成熟的Endbulb以活动依赖的方式发生,包括在听力发作后的几周内消除多轴突输入以保留1-2个主要输入。我们的分析表明,Endbulb突触的突触成熟受到影响,突变的Endbulbs接收到更高数量的SG轴突输入。因此,我们的结果表明,AVCN神经元特定子集中的Hox PG2基因的条件缺失会影响几个后期的发育提炼过程 ud除了上述研究之外,本论文的手稿还包括另一项研究(目前正在出版,欧洲神经科学杂志),该研究是与来自法国的Varun Sreenivasan合作完成的。卡尔·彼得森教授小组,瑞士EPFL。在这项研究中,我们绘制了将皮质输入连接到后脑面部运动核(FMN)的神经元路径图,从而驱动了老鼠晶须系统中的周围面部肌肉。我们研究了来自运动皮层(M1)和体感皮层(S1)的皮质输入如何与后脑中的运动前和运动核相互作用,同时驱动不同的晶须运动。我们确定与晶须缩回和晶须缩进相关的运动前核的不同子集,它们分别从S1和M1接收不同的皮质输入。我们的结果表明,M1驱动的晶须缩回和S1驱动的晶须缩回均通过两条平行途径被激活。因此,在这项研究中,我们进一步了解了晶须运动的解剖学途径。 ud

著录项

  • 作者

    Karmakar Kajari;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号