首页> 外文OA文献 >New geochemical constraints on the genesis of the Gamsberg zinc deposit, Namaqualand Metamorphic Province, South Africa
【2h】

New geochemical constraints on the genesis of the Gamsberg zinc deposit, Namaqualand Metamorphic Province, South Africa

机译:对南非纳马夸兰变质省Gamsberg锌矿床成因的新地球化学限制

摘要

The base metal massive sulfide deposits of the Aggeneys-Gamsberg (A-G) District are hosted within the Mesoproterozoic Bushmanland Group of the Namaqua-Natal Metamorphic Complex in the Northern Cape Province of South Africa. The district displays an apparent eastward trend in the economic concentration of base metals (+ barite) from relatively Cu-Pb-rich, Ba-poor mineralisation at Black Mountain to Zn- and Ba-rich ores at Gamsberg. Base metal sulfides at Gamsberg are restricted to the so called Gams (Iron) Formation which comprises a sulfidic mineralized unit (“B”) enveloped within a sequence of meta-sedimentary units (“A” and “C”). The aim of the study was to shed further light on the genesis and chemical evolution of the sulfide mineralisation at Gamsberg in the context of the entire A-G District, by interrogating further the apparent district-wide trend in base metal distribution. The Gams Iron Formation was sampled and studied from one key drill core intersection (“G1”) which intersects the largest part of it as described elsewhere; a small number of additional samples from a second drill core (“G2”) complemented the main sample suite. Minerals that make up the silicate assemblages across the studied section include quartz, garnet, pyroxene, pyroxenoid, phyllosilicates, carbonates, amphiboles, oxides (chiefly magnetite) and graphite. In a stratigraphic context, the mineralogical variations conform directly to those documented in the relevant literature from the Gamsberg locality. These are coupled, where possible, with mineral-chemical profiles of selected silicate species which replicate those of bulk-rock compositions, particularly with respect to Mn, Fe and Ca in the upper C Unit of the studied section. These signals collectively track the characteristic transition from a terrigenous, siliciclastic sediment-dominated footwall to an exhalative sediment-dominated hanging wall to the sulfide mineralisation as also seen in similar deposits elsewhere, particularly with respect to the characteristic Mn-rich signature increasingly observed in the hanging wall C Unit. The foregoing suggests that the examined section faithfully records the interpreted primary stratigraphy of the deposits, despite the complex structural and metamorphic overprint that characterises the region. This facilitates a stratigraphic analytical approach on the sulfidic Unit B, through a combination of mineral-chemical and stable isotope analyses. Dominant sulfides in Unit B are sphalerite and pyrite, with lesser pyrrhotite and minor galena. Sphalerite shows high and generally invariant contents of Fe (mean 12.18wt%, as FeS) whereas Zn anti-correlates with Mn (mean 5.58wt%, as MnS). Isotopic analyses for S, Fe and Zn in hand-picked sphalerite and pyrite separates were used with a view to providing new evidence for chemical and isotopic variation within the sulfide ore-body in a vertical (i.e. stratigraphic) sense, discuss the implications thereof, and ultimately interpret the new data in light of similar existing data from the A-G District and elsewhere. The δ³⁴S data for pyrite (plus a single pyrrhotite grain) and sphalerite from both cores G1 and G2 show comparable compositional ranges between 22.9 and 30.4‰ and between 27 and 30.1‰ respectively. The δ⁵⁶Fe data for pyrite show a range between -1.85 and 0.19‰, whereas seven sphalerite separates have a very narrow range of δ⁶⁶Zn from 0.06 to 0.20‰. The atypically high sulfur isotope data reported in this study are interpreted to reflect sedimentary deposition of primary sulfide ore at Gamsberg from an isotopically highly evolved seawater sulfate source through large-scale Rayleigh fractionation processes. Thermogenic sulfate reduction is proposed to have been the main reductive mechanism from seawater sulfate to sulfide, given the absence of very low δ³⁴S data for sulfides anywhere in the A-G District. By contrast, the δ⁶⁶Zn values for sphalerite are for all intents and purposes invariant and very close to 0‰, and therefore suggest little Zn isotope fractionation from an original exhalative fluid source. On this evidence alone, Zn isotopes therefore appear to hold little promise as a proxy of the chemical and isotopic evolution of SEDEX deposits in space and time, although this can only be verified through further application in the broader A-G District and similar deposits elsewhere. The apparent decoupling of Zn and S isotopes in the Gamsberg sulfide deposit, however, points towards diverse sources of these two components, i.e. ascending metalliferous brines versus seawater respectively. Finally, pyrite δ⁵⁶Fe data do show a stratigraphic trend of generally declining values up-section, which are interpreted to reflect the influence of broadly coeval precipitation of isotopically heavy Fe-oxides on a broader-scale – now preserved as abundant magnetite through metamorphism. Further work on the iron isotope composition of silicate-and oxide-hosted Fe on a local-to-district scale will assist in testing this interpretation.
机译:Aggeneys-Gamsberg(A-G)区的贱金属块状硫化物矿床位于南非北开普省Namaqua-Natal变质综合体的中元古代Bushmanland群内。该地区的贱金属(重晶石)的经济集中度呈现出明显的东移趋势,从黑山相对富铜,贫钡的矿藏到盖姆斯贝格富锌和富钡的矿石。 Gamsberg的贱金属硫化物仅限于所谓的Gams(铁)地层,该地层包括包裹在一系列准沉积单元(“ A”和“ C”)中的硫化矿化单元(“ B”)。该研究的目的是通过进一步探究整个地区在贱金属分布中的明显趋势,来进一步阐明在整个A-G区范围内Gamsberg硫化物矿化的成因和化学演化。甘姆斯铁层是从一个关键的钻心交叉点(“ G1”)取样和研究的,该交叉点与钻探最大的部分相交,如其他地方所述;来自第二个钻芯(“ G2”)的少量其他样品补充了主要样品套件。在整个研究部分中,构成硅酸盐组合的矿物包括石英,石榴石,辉石,辉石类,层状硅酸盐,碳酸盐,闪石,氧化物(主要是磁铁矿)和石墨。在地层学背景下,矿物学变化直接与Gamsberg地区相关文献中记载的变化一致。在可能的情况下,将这些与选定的硅酸盐物质的矿物化学特征相结合,这些矿物化学特征可以复制块状岩石成分的矿物化学特征,尤其是在研究部分上部C单元中的Mn,Fe和Ca。这些信号共同跟踪了从陆源硅质碎屑为主的底盘到呼气性沉积物为主的吊壁到硫化物矿化的特征转变,这在其他地方的类似矿床中也可以看到,特别是关于在矿山中逐渐观察到的富锰特征。挂墙C单元。前述内容表明,尽管该区域具有复杂的构造和变质叠印特征,但所研究的部分仍忠实地记录了矿床的解释性地层。通过矿物化学和稳定同位素分析的结合,这有助于对硫化物单元B进行地层分析。 B单元中主要的硫化物是闪锌矿和黄铁矿,以及较少的黄铁矿和少量方铅矿。闪锌矿显示出高含量且通常不变的Fe(FeS平均值为12.18wt%),而Zn与Mn反相关(MnS平均值为5.58wt%)。进行了手工挑选的闪锌矿和黄铁矿分离物中S,Fe和Zn的同位素分析,目的是为硫化物矿体内部的垂直(即地层)化学和同位素变化提供新的证据,并讨论其含义,并最终根据AG区和其他地方的类似现有数据来解释新数据。来自两个岩心G1和G2的黄铁矿(加上一个黄铁矿晶粒)和闪锌矿的δ3S数据分别显示出可比较的组成范围,分别在22.9和30.4‰之间和27和30.1‰之间。黄铁矿的δ⁵⁶Fe数据范围为-1.85至0.19‰,而七个闪锌矿分离物的δ⁶⁶Zn范围很窄,为0.06至0.20‰。这项研究中报告的非典型高硫同位素数据被解释为反映了通过大规模瑞利分馏过程从同位素高度演化的海水硫酸盐源在Gamsberg的原始硫化物矿石的沉积。考虑到A-G区中任何地方的硫化物都没有非常低的δ³S数据,因此拟议的热还原硫酸盐还原是从海水硫酸盐到硫化物的主要还原机理。相比之下,闪锌矿的δ⁶⁶Zn值在所有意图和目的上都是不变的,并且非常接近0‰,因此暗示原始呼出液源中的Zn同位素分馏很少。因此,仅凭这一证据,锌同位素就不能代表SEDEX沉积物在空间和时间上的化学和同位素演化,尽管只有通过在更广泛的A-G区和其他地方的类似沉积物中进一步应用才能证实这一点。然而,Gamsberg硫化物矿床中Zn和S同位素的明显去耦指向这两种成分的不同来源,即分别以含金属的盐水相对于海水的浓度上升。最后,黄铁矿δ⁵⁶Fe数据确实显示出地层向上普遍下降的地层趋势。,这被解释为反映同位素重铁氧化物的广泛同时沉淀对更大范围的影响-现在通过变质保存为丰富的磁铁矿。在局部到区域范围内对硅酸盐和氧化物基铁的铁同位素组成的进一步研究将有助于检验这一解释。

著录项

  • 作者

    Foulkes Susan Elizabeth;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号