首页> 外文OA文献 >Wavelets and sparse methods for image reconstruction and classification in neuroimaging
【2h】

Wavelets and sparse methods for image reconstruction and classification in neuroimaging

机译:用于神经成像中图像重建和分类的小波和稀疏方法

摘要

This dissertation contributes to neuroimaging literature in the fields of compressed sensing magnetic resonance imaging (CS-MRI) and image-based detection of Alzheimer’s disease (AD). It consists of three main contributions, based on wavelets and sparse methods.udThe first contribution is a method for wavelet packet basis optimisation for sparse approximation and compressed sensing reconstruction of magnetic resonance (MR) images of the brain. The proposed method is based on the basis search algorithm developed by Coifman and Wickerhauser, with a cost function designed specifically for compressed sensing. It is tested on MR images available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).udThe second contribution consists of evaluating and comparing several sparse classification methods in an application to detection of AD based on positron emission tomography (PET) images of the brain. This comparison includes univariate feature selection, feature clustering and classifiers that automatically select a small subset of features due to their mathematical or algorithmic construction. The evaluation is based on PET images available from ADNI.udThe third contribution is proposing an extension of wavelet-based scattering networks (originally proposed by Mallat and Bruna) to three-dimensional tomographic images. The proposed extension is evaluated as a feature representation in an application to detection of AD based on MR images available from ADNI.udThere are several possible extensions of the work presented in this dissertation. The wavelet packet basis search method proposed in the first contribution can be improved to take into account the coherence between the sparse approximation basis and the sensing basis. The evaluation presented in the second contribution can be extended with additional algorithms to make it more comprehensive. The three-dimensional scattering networks that are the core part of the third contribution can be combined with other machine learning methods, such as manifold learning or deep convolutional neural networks.udAs a whole, the methods proposed in this dissertation contribute to the work towards efficient screening for Alzheimer’s disease, by making MRI scans of the brain faster and helping to automate image analysis for AD detection.udThe first contribution is a method for wavelet packet basis optimisation for sparse approximation and compressed sensing reconstruction of magnetic resonance (MR) images of the brain. The proposed method is based on the basis search algorithm developed by Coifman and Wickerhauser, with a cost function designed specifically for compressed sensing. It is tested on MR images available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).udThe second contribution consists of evaluating and comparing several sparse classification methods in an application to detection of AD based on positron emission tomography (PET) images of the brain. This comparison includes univariate feature selection, feature clustering and classifiers that automatically select a small subset of features due to their mathematical or algorithmic construction. The evaluation is based on PET images available from ADNI.udThe third contribution is proposing an extension of wavelet-based scattering networks (originally proposed by Mallat and Bruna) to three-dimensional tomographic images. The proposed extension is evaluated as a feature representation in an application to detection of AD based on MR images available from ADNI.udThere are several possible extensions of the work presented in this dissertation. The wavelet packet basis search method proposed in the first contribution can be improved to take into account the coherence between the sparse approximation basis and the sensing basis. The evaluation presented in the second contribution can be extended with additional algorithms to make it more comprehensive. The three-dimensional scattering networks that are the core part of the third contribution can be combined with other machine learning methods, such as manifold learning or deep convolutional neural networks.udThis dissertation contributes to neuroimaging literature in the fields of compressed sensing magnetic resonance imaging (CS-MRI) and image-based detection of Alzheimer’s disease (AD). It consists of three main contributions, based on wavelets and sparse methods.udThe first contribution is a method for wavelet packet basis optimisation for sparse approximation and compressed sensing reconstruction of magnetic resonance (MR) images of the brain. The proposed method is based on the basis search algorithm developed by Coifman and Wickerhauser, with a cost function designed specifically for compressed sensing. It is tested on MR images available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).udThe second contribution consists of evaluating and comparing several sparse classification methods in an application to detection of AD based on positron emission tomography (PET) images of the brain. This comparison includes univariate feature selection, feature clustering and classifiers that automatically select a small subset of features due to their mathematical or algorithmic construction. The evaluation is based on PET images available from ADNI.udThe third contribution is proposing an extension of wavelet-based scattering networks (originally proposed by Mallat and Bruna) to three-dimensional tomographic images. The proposed extension is evaluated as a feature representation in an application to detection of AD based on MR images available from ADNI.udThere are several possible extensions of the work presented in this dissertation. The wavelet packet basis search method proposed in the first contribution can be improved to take into account the coherence between the sparse approximation basis and the sensing basis. The evaluation presented in the second contribution can be extended with additional algorithms to make it more comprehensive. The three-dimensional scattering networks that are the core part of the third contribution can be combined with other machine learning methods, such as manifold learning or deep convolutional neural networks.udAs a whole, the methods proposed in this dissertation contribute to the work towards efficient screening for Alzheimer’s disease, by making MRI scans of the brain faster and helping to automate image analysis for AD detection.
机译:该论文为压缩成像磁共振成像(CS-MRI)和基于图像的阿尔茨海默氏病(AD)检测领域的神经影像学研究做出了贡献。它由基于小波和稀疏方法的三个主要贡献组成。 ud第一个贡献是一种用于小波包基本优化的方法,用于稀疏近似和压缩磁共振重建大脑的磁共振(MR)图像。该方法基于Coifman和Wickerhauser开发的基础搜索算法,并具有专门为压缩传感设计的代价函数。它在可从阿尔茨海默氏病神经影像学计划(ADNI)获得的MR图像上进行了测试。 ud第二个贡献是评估和比较几种稀疏分类方法,这些方法在基于脑部正电子发射断层扫描(PET)图像的AD检测应用中。这种比较包括单变量特征选择,特征聚类和分类器,这些分类器由于其数学或算法构造而自动选择特征的一小部分。该评估基于可从ADNI获得的PET图像。 ud第三项提议是将基于小波的散射网络(最初由Mallat和Bruna提出)扩展到三维断层图像。拟议的扩展被评估为基于ADNI的MR图像在AD检测应用中的一种特征表示。 ud本文中提出的工作有几种可能的扩展。可以改进第一贡献中提出的小波包基搜索方法,以考虑稀疏近似基和感测基之间的相干性。第二部分中提出的评估可以使用其他算法进行扩展,以使其更加全面。作为第三项贡献的核心部分的三维散射网络可以与其他机器学习方法(例如流形学习或深度卷积神经网络)相结合。 ud总体而言,本文提出的方法有助于实现这一目标。通过加快对大脑的MRI扫描速度并帮助自动进行AD分析的图像分析来有效筛查阿尔茨海默氏病。 ud第一个贡献是一种用于小波包优化的方法,用于稀疏近似和磁共振(MR)图像的压缩感测重建的大脑。该方法基于Coifman和Wickerhauser开发的基础搜索算法,并具有专门为压缩传感设计的代价函数。它在可从阿尔茨海默氏病神经影像学计划(ADNI)获得的MR图像上进行了测试。 ud第二个贡献是评估和比较几种稀疏分类方法,这些方法在基于脑部正电子发射断层扫描(PET)图像的AD检测应用中。这种比较包括单变量特征选择,特征聚类和分类器,这些分类器由于其数学或算法构造而自动选择特征的一小部分。该评估基于可从ADNI获得的PET图像。 ud第三项提议是将基于小波的散射网络(最初由Mallat和Bruna提出)扩展到三维断层图像。拟议的扩展被评估为基于ADNI的MR图像在AD检测应用中的一种特征表示。 ud本文中提出的工作有几种可能的扩展。可以改进第一贡献中提出的小波包基搜索方法,以考虑稀疏近似基和感测基之间的相干性。第二部分中提出的评估可以使用其他算法进行扩展,以使其更加全面。作为第三项贡献的核心部分的三维散射网络可以与其他机器学习方法(例如流形学习或深度卷积神经网络)结合使用。 ud本论文为压缩传感磁共振成像领域的神经成像文献做出了贡献(CS-MRI)和基于图像的阿尔茨海默氏病(AD)检测。它由基于小波和稀疏方法的三个主要贡献组成。 ud第一个贡献是一种用于小波包基本优化的方法,用于稀疏近似和压缩磁共振重建大脑的磁共振(MR)图像。该方法基于Coifman和Wickerhauser开发的基础搜索算法,具有专门为压缩感测设计的成本功能。它在可从阿尔茨海默氏病神经影像学计划(ADNI)获得的MR图像上进行了测试。 ud第二个贡献是评估和比较几种稀疏分类方法,这些方法在基于脑部正电子发射断层扫描(PET)图像的AD检测应用中。这种比较包括单变量特征选择,特征聚类和分类器,这些分类器由于其数学或算法构造而自动选择特征的一小部分。该评估基于可从ADNI获得的PET图像。 ud第三项提议是将基于小波的散射网络(最初由Mallat和Bruna提出)扩展到三维断层图像。拟议的扩展被评估为基于ADNI的MR图像在AD检测应用中的一种特征表示。 ud本文中提出的工作有几种可能的扩展。可以改进第一贡献中提出的小波包基搜索方法,以考虑稀疏近似基和感测基之间的相干性。第二部分中提出的评估可以使用其他算法进行扩展,以使其更加全面。作为第三项贡献的核心部分的三维散射网络可以与其他机器学习方法(例如流形学习或深度卷积神经网络)相结合。 ud总体而言,本文提出的方法有助于实现这一目标。通过更快地对大脑进行MRI扫描并帮助自动化图像分析以进行AD检测,可以有效筛查阿尔茨海默氏病。

著录项

  • 作者

    Romaniuk Michal;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号