首页> 外文OA文献 >Synthesis of multi-segmented TiO2/Pt nanorods for photocatalytic hydrogen production
【2h】

Synthesis of multi-segmented TiO2/Pt nanorods for photocatalytic hydrogen production

机译:用于光催化制氢的多段TiO2 / pt纳米棒的合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Photovoltaic modules are under active consideration as a major contributor to future energy requirements. Coupled with an electrolyzer, this energy system converts energy harvested from the sun into chemical power. As the demand for a sustainable yet efficient and cost effective approach of producing hydrogen increases, researchers are seeking ways to improve the technology of forming solar fuel. Mimicking the idea of how nature collects and stores solar energy in chemicals bonds through photosynthesis, economically viable water splitting cells capable of splitting water directly at the semiconductor surface are being developed. The catalytic semiconductor is designed to be both a light absorber and an energy converter to store solar energy in the simplest chemical bond, H2, thereby eradicating significant fabrication and system costs involved with the use of separate electrolyzers wired to photovoltaic cells.udIn this work, water-splitting materials have been designed to consist of multi-component nanorods of titanium dioxide and platinum with well-defined nanostructures to function as photocatalytic cell for hydrogen production. As the TiO2-Pt nanorods are irradiated with light in the presence of a water source, oxygen and hydrogen are evolved at the anode TiO2 and cathode Pt segments of the nanorods respectively. The alternating segments of TiO2 semiconductor and Pt metal enable the control of the direction of charge movement and light absorption pathways in the material, thereby presenting a solution to improving the overall efficiency of photocatalytic hydrogen production.udBy employing templated electrodeposition, homogeneous multi-segmented TiO2/Pt nanorods have been successfully fabricated in anodic aluminium oxide membrane (AAM). This simple method of synthesis permits an easier control of the position and composition of TiO2 and Pt along the length of the nanorods, which allows for a customizable and highly reproducible method of obtaining segmented rods with uniformly distributed active sites for efficient catalytic activity. The morphology and material composition of the as-prepared Pt-TiO2 multi-segmented nanorods were characterized using the scanning electron microscope (SEM), transmission electron microscope (TEM) and the x-ray diffraction (XRD); and the photocatalytic properties of these multi-segmented TiO2/Pt nanorods are then examined by carrying out absorption studies using Rhodamine B (RhB).udTwo different Ti precursors, TiOSO4 and TiCl3 were employed in the successful fabrication of TiO2 nanorod segments. High potentiostatic conditions of -1.2 V (vs. 3 M Ag/AgCl) using TiOSO4 precursor resulted in TiO2 nanorods, but at the same time had promoted hydrogen evolution, which made it challenging for TiO2 nanorods to be deposited onto noble metal surfaces such as Pt; while lowering theudpotentiostatic voltages resulted in the growth of TiO2 nanotubes. Cyclic voltammetry and chemical tests were carried out to determine the detailed mechanisms of their respective growth, and the difference in the formation of TiO2 nanorods and nanotubes was attributed to be the regeneration of high amounts of NO3- species occurring at more negative deposition voltages. Using TiCl3, a protocol has been developed for the electrodeposition of TiO2 nanorods, which involved a low deposition voltage of -0.1 V (vs. 1 M Ag/AgCl) that would facilitate the deposition of TiO2 on noble metals such as Pt. This protocol allows both the flexibility of preparing TiCl3 precursor solution and the electrodeposition of TiO2 nanorods to be carried out at ambient conditions.udIn the presence of TiO2/Pt nanorods, RhB degradation studies reveal several pertinent characteristics of the photoactivities of the TiO2/Pt nanostructures, where nanostructural morphology, addition of Pt metal and TiO2/Pt interfaces were found to enhance TiO2 photoactivity. The effects of varying TiO2 length segments of Pt-TiO2 nanorods on the photoactivities of TiO2/Pt nanorods reveal an interesting trend, demonstrating an interplay between light absorption and the amount of light reaching the TiO2/Pt interface. Lastly, differences in the orientation of bi-segmented TiO2/Pt nanorods to the light source are presented, which may be useful in any future work on the investigation of the photoactivities of nanostructure arrays.
机译:光伏模块正被积极考虑作为未来能源需求的主要贡献者。结合电解器,该能量系统将太阳收集的能量转换为化学能。随着人们对可持续,高效且具有成本效益的制氢方法的需求不断增长,研究人员正在寻求方法来改善形成太阳能的技术。模仿自然界如何通过光合作用以化学键的形式收集和存储太阳能的想法,正在开发经济上可行的能够直接在半导体表面分解水的分解水电池。催化半导体被设计成既是光吸收器又是能量转换器,以最简单的化学键H2的形式存储太阳能,从而消除了使用单独的连接至光伏电池的电解槽所涉及的大量制造和系统成本。 ,已经设计了水分解材料,该材料由具有明确定义的纳米结构的二氧化钛和铂的多组分纳米棒组成,可以用作制氢的光催化电池。当在水的存在下用光照射TiO2-Pt纳米棒时,氧和氢分别在纳米棒的阳极TiO2和阴极Pt链段放出。 TiO2半导体和Pt金属的交替部分能够控制材料中的电荷移动方向和光吸收路径,从而为提高光催化制氢的整体效率提供了解决方案。 udd采用模板电沉积,均质多段TiO2 / Pt纳米棒已成功在阳极氧化铝膜(AAM)中制备。这种简单的合成方法可以更轻松地控制TiO2和Pt在纳米棒长度方向上的位置和组成,从而为获得具有有效催化活性的活性位置均匀分布的分段棒提供了一种可定制且高度可重现的方法。用扫描电子显微镜(SEM),透射电子显微镜(TEM)和X射线衍射(XRD)对制备的Pt-TiO2多段纳米棒的形貌和材料组成进行表征。然后用罗丹明B(RhB)进行吸收研究,研究了这些多段的TiO2 / Pt纳米棒的光催化性能。 ud两种不同的Ti前体TiOSO4和TiCl3被成功地用于制造TiO2纳米棒链段。使用TiOSO4前体的高恒电位条件-1.2 V(vs. 3 M Ag / AgCl)产生TiO2纳米棒,但同时促进了氢的释放,这使得将TiO2纳米棒沉积到贵金属表面(例如:铂;同时降低恒电位电压导致TiO2纳米管的生长。进行了循环伏安法和化学测试,以确定它们各自生长的详细机理,并且TiO2纳米棒和纳米管形成的差异归因于在更多负沉积电压下大量NO3-的再生。使用TiCl3,已开发出电沉积TiO2纳米棒的协议,该协议涉及-0.1 V(vs. 1 M Ag / AgCl)的低沉积电压,这将有助于TiO2在贵金属(如Pt)上的沉积。该协议允许在环境条件下灵活地制备TiCl3前体溶液和电沉积TiO2纳米棒。 ud在TiO2 / Pt纳米棒的存在下,RhB降解研究揭示了TiO2 / Pt光活性的几个相关特征纳米结构,其中纳米结构形态,Pt金属和TiO2 / Pt界面的添加可增强TiO2的光活性。 Pt-TiO2纳米棒的TiO2长度段的变化对TiO2 / Pt纳米棒的光活性的影响揭示了一个有趣的趋势,表明了光吸收与到达TiO2 / Pt界面的光量之间存在相互作用。最后,介绍了双节段TiO2 / Pt纳米棒相对于光源的取向差异,这可能在未来任何有关纳米结构阵列光活性研究的工作中有用。

著录项

  • 作者

    Teo Yanru Gladys;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号