首页> 外文OA文献 >Elucidating the spatial organization and control of information processing in cell signalling networks: from network and enzymatic building blocks to concrete systems
【2h】

Elucidating the spatial organization and control of information processing in cell signalling networks: from network and enzymatic building blocks to concrete systems

机译:阐明细胞信号网络中信息处理的空间组织和控制:从网络和酶促构建块到具体系统

摘要

Cells function and survive by making decisions in response to dynamic environments. The core controllers of decision-making are highly complex intracellular networks of proteins and genes, which harbour sophisticated information processing capabilities. The effect of spatial organization and control of signaling networks is typically ignored. However, the role of space in signalling networks is being increasingly recognized. While there are some experimental and modelling efforts that incorporate spatial aspects in specific cellular contexts, the role of spatial regulation of signalling across different cell networks remains largely unexplored.udIn this thesis, we utilize a combination of mathematical modeling, systems engineering and in silico synthetic approaches to understand the spatial organization and control of signaling networks at multiple levels. We examine spatial effects in representative networks and enzymatic building blocks, including typical network modules, covalent modification cycles and enzymatic modification cascades and pathways. We complement these studies by dissecting the role of spatial regulation in the concrete context of the Caulobacter cell cycle, which involves specific combinations of these building blocks. In another investigation, we examine the organization of spatially regulated signaling networks underlying chemotaxis.udWe explicitly examine the effects of diffusion and its interplay with spatially varying signals and localization/compartmentalization of signalling entities and gain key insights into the interplay of these factors. At the network level, examining typical network modules reveals how introduction of diffusion/global entities may significantly distort temporal characteristics and introduce new types of signal transduction characteristics. At the enzymatic level, dissecting spatial regulation in enzymatic modules highlights the subtle effect and new facets that arise due to the interweaving of cycle kinetics and diffusion. The var- ious ways in which spatial compartmentalization affects pathway behaviour is revealed in the study of various types of signaling pathways. The study of spatial regulation of these enzymatic/network building blocks provides a systematic basis for understanding how spatial control can affect the spatiotemporal interactions driving Caulobacter cell cycle and we use an in-silico synthetic approach to create a platform for further understanding the functioning of the networks controlling this process. In a different study, we use a design approach to shed light on different signalling configurations of chemotactic networks that allow cells to exhibit both attractive and repulsive behaviour, in light of known signalling characteristics seen in cells.udOur results uncover the various capabilities, constraints and trade-offs associated withudthe spatial control of information processing in signalling networks, which come to the surface only if spatial factors are explicitly considered. Overall, using a focused multipronged approach reveals different facets of spatial regulation of signalling at multiple levels and in different contexts. Combining mathematical modelling, systems engineering and synthetic design approaches creates a powerful framework, which may be used to elucidate spatial control of information processing in multiple contexts and design synthetic systems that could fruitfully exploit spatial organization and regulation.
机译:细胞通过响应动态环境做出决策来发挥作用并生存。决策的核心控制者是蛋白质和基因的高度复杂的细胞内网络,具有复杂的信息处理能力。通常忽略信令网络的空间组织和控制的影响。但是,人们越来越认识到空间在信令网络中的作用。尽管有一些实验和建模工作在特定的细胞环境中纳入了空间方面的内容,但仍未充分研究跨不同细胞网络进行信号传递的空间调节作用。 ud在本文中,我们将数学建模,系统工程和计算机模拟相结合多种方法来了解信令网络的空间组织和控制。我们研究了代表性网络和酶促结构单元中的空间效应,包括典型的网络模块,共价修饰循环以及酶促修饰级联和途径。我们通过剖析空间调节在杆状杆菌细胞周期的具体环境中的作用来补充这些研究,该过程涉及这些构件的特定组合。在另一项调查中,我们检查了趋化性背后的空间调节信号网络的组织。 ud我们明确检查了扩散及其与空间变化信号的相互作用以及信号实体的定位/分隔的作用,并深入了解了这些因素之间的相互作用。在网络级别,检查典型的网络模块揭示了扩散/全局实体的引入如何可能极大地扭曲时间特性并引入新型的信号转导特性。在酶的层面上,解剖酶模块中的空间调节突出了由于循环动力学和扩散相互交织而产生的微妙效果和新的方面。对各种信号通路的研究揭示了空间分隔影响通路行为的各种方式。这些酶/网络结构单元的空间调节研究为理解空间控制如何影响驱动杆状细菌细胞周期的时空相互作用提供了系统的基础,并且我们使用计算机合成方法创建了一个平台,以进一步了解该功能。网络控制此过程。在另一项研究中,我们使用一种设计方法来阐明趋化网络的不同信号传导配置,从而根据已知的细胞信号传导特性,使细胞表现出吸引和排斥的行为。 ud我们的结果揭示了各种功能,与信令网络中信息处理的空间控制有关的约束和权衡,只有明确考虑了空间因素后,这些约束和权衡才会浮出水面。总体而言,使用集中的多管齐下的方法揭示了信号在多个级别和不同上下文中的空间调节的不同方面。将数学建模,系统工程和综合设计方法相结合,可以创建一个功能强大的框架,该框架可用于阐明多种情况下信息处理的空间控制,并设计可以有效利用空间组织和调控的综合系统。

著录项

  • 作者

    Alam Nazki Aiman;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号