首页> 外文OA文献 >Evolutionary adaptation of the essential tRNA methyltransferase TrmD to the signaling molecule 3,5-cAMP in bacteria.
【2h】

Evolutionary adaptation of the essential tRNA methyltransferase TrmD to the signaling molecule 3,5-cAMP in bacteria.

机译:基本tRNa甲基转移酶TrmD进化为细菌中信号分子3,5-camp的适应性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nucleotide signaling molecule 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) plays important physiological roles, ranging from carbon catabolite repression in bacteria to mediating the action of hormones in higher eukaryotes, including human. However, it remains unclear whether 3',5'-cAMP is universally present in the Firmicutes group of bacteria. We hypothesized that searching for proteins that bind 3',5'-cAMP might provide new insight into this question. Accordingly, we performed a genome-wide screen, and identified the essential Staphylococcus aureus tRNA m1G37 methyltransferase enzyme TrmD, which is conserved in all three domains of life, as a tight 3',5'-cAMP binding protein. TrmD enzymes are known to use S-adenosyl-L-methionine (AdoMet) as substrate; we shown that 3',5'-cAMP binds competitively with AdoMet to the S. aureus TrmD protein, indicating an overlapping binding site. However, the physiological relevance of this discovery remained unclear, as we were unable to identify a functional adenylate cyclase in S. aureus and only detected 2',3'-cAMP but not 3',5'-cAMP in cellular extracts. Interestingly, TrmD proteins from Escherichia coli and Mycobacterium tuberculosis, organisms known to synthesize 3',5'-cAMP, did not bind this signaling nucleotide. Comparative bioinformatics, mutagenesis and biochemical analyses revealed that the highly conserved Tyr86 residue in E. coli TrmD is essential to discriminate between 3',5'-cAMP and the native substrate AdoMet. Combined with a phylogenetic analysis, these results suggest that amino acids in the substrate binding pocket of TrmD underwent an adaptive evolution to accommodate the emergence of adenylate cyclases and thus the signaling molecule 3',5'-cAMP. Altogether this further indicates that S. aureus does not produce 3',5'-cAMP, which would otherwise competitively inhibit an essential enzyme.
机译:核苷酸信号分子3',5'-环腺苷单磷酸(3',5'-cAMP)发挥重要的生理作用,范围从细菌中的碳分解代谢物阻遏到介导包括人类在内的高级真核生物中激素的作用。但是,尚不清楚3',5'-cAMP是否普遍存在于Firmicutes细菌组中。我们假设寻找结合3',5'-cAMP的蛋白质可能会提供对该问题的新见解。因此,我们进行了全基因组筛选,并将必需的金黄色葡萄球菌tRNA m1G37甲基转移酶TrmD(在生命的所有三个域中都保守)鉴定为紧密的3',5'-cAMP结合蛋白。已知TrmD酶使用S-腺苷-L-蛋氨酸(AdoMet)作为底物。我们显示3',5'-cAMP与AdoMet竞争性结合金黄色葡萄球菌TrmD蛋白,表明有重叠的结合位点。然而,该发现的生理相关性仍不清楚,因为我们无法在金黄色葡萄球菌中鉴定功能性腺苷酸环化酶,而仅在细胞提取物中检测到2',3'-cAMP,而未检测到3',5'-cAMP。有趣的是,来自大肠杆菌和结核分枝杆菌的TrmD蛋白(已知可合成3',5'-cAMP的生物体)不结合该信号核苷酸。比较的生物信息学,诱变和生化分析表明,大肠杆菌TrmD中高度保守的Tyr86残基对于区分3',5'-cAMP和天然底物AdoMet是必不可少的。结合系统发育分析,这些结果表明,TrmD的底物结合口袋中的氨基酸经历了适应性进化,以适应腺苷酸环化酶的出现,从而适应信号分子3',5'-cAMP的出现。总之,这进一步表明金黄色葡萄球菌不产生3',5'-cAMP,否则其将竞争性地抑制必需酶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号