首页> 外文OA文献 >Finite element modeling of frictional contact and stress intensity factors in three-dimensional fractured media using unstructured tetrahedral meshes
【2h】

Finite element modeling of frictional contact and stress intensity factors in three-dimensional fractured media using unstructured tetrahedral meshes

机译:非结构四面体网格在三维裂隙介质中摩擦接触和应力强度因子的有限元模拟

摘要

This thesis introduces a three-dimensional (3D) finite element (FE) formulation to model the linear elastic deformation of fractured media under tensile and compressive loadings. The FE model is based on unstructured meshes using quadratic tetrahedral elements, and includes several novel components: (i) The singular stress field near the crack front is modeled using quarter-point tetrahedral finite elements. (ii) The frictional contact between the crack faces is modeled using isoparametric contact discretization and a gap-based augmented Lagrangian method. (iii) Accurate stress intensity factors (SIFs) of 3D cracks computed using the two novel approaches of displacement correlation and disk-shaped domain integral. The main contributions in the FE modeling of 3D cracks are: (i) It is mathematically proven that quarter-point tetrahedral finite elements (QPTs) reproduce the square root strain singularity of crack problems. (ii) A displacement correlation (DC) scheme is proposed in combination with QPTs to compute SIFs from unstructured meshes. (iii) A novel domain integral approach is introduced for the accurate computation of the pointwise $J$-integral and the SIFs using tetrahedral elements. The main contributions in the contact algorithm are: (i) A square root singular variation of the penalty parameter near the crack front is proposed to accurately model the contact tractions near the crack front. (ii) A gap-based augmented Lagrangian algorithm is introduced for updating the contact forces obtained from the penalty method to more accurate estimates. The results of contact and stress intensity factors are validated for several numerical examples of cubes containing single and multiple cracks. Finally, two applications of this numerical methodology are discussed: (i) Understanding the hysteretic behavior in rock deformation; and (ii) Simulating 3D brittle crack growth. The results in this thesis provide significant evidence that tetrahedral elements are efficient, reliable and robust instruments for accurate linear elastic fracture mechanics calculations.
机译:本文介绍了三维有限元(FE)公式,以模拟在拉伸和压缩载荷下裂缝性介质的线性弹性变形。有限元模型基于使用二次四面体元素的非结构网格,并包含几个新颖的组件:(i)使用四分之一点四面体有限元对裂纹前沿附近的奇异应力场进行建模。 (ii)使用等参接触离散化和基于间隙的增强拉格朗日方法对裂纹面之间的摩擦接触进行建模。 (iii)使用位移相关和圆盘状域积分这两种新颖方法计算出的3D裂纹的精确应力强度因子(SIF)。 3D裂纹的有限元建模的主要贡献是:(i)在数学上证明了四分之一点四面体有限元(QPT)再现了裂纹问题的平方根应变奇异性。 (ii)提出了一种与QPT结合的位移相关(DC)方案,以从非结构化网格计算SIF。 (iii)引入了一种新颖的域积分方法,用于使用四面体元素精确计算逐点$ J $积分和SIF。接触算法的主要贡献是:(i)提出了裂纹前沿附近惩罚参数的平方根奇异变化,以精确地模拟裂纹前沿附近的接触牵引力。 (ii)引入了基于间隙的增强拉格朗日算法,用于将通过惩罚方法获得的接触力更新为更准确的估计值。接触和应力强度因子的结果已针对包含单个和多个裂纹的立方体的几个数值示例进行了验证。最后,讨论了该数值方法的两个应用:(i)了解岩石变形中的磁滞行为; (ii)模拟3D脆性裂纹扩展。本文的结果提供了重要的证据,证明四面体单元是用于精确的线性弹性断裂力学计算的有效,可靠和鲁棒的工具。

著录项

  • 作者

    Nejati Morteza;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号