首页> 外文OA文献 >Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling
【2h】

Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling

机译:浅层和浮力岩石圈俯冲:热化学数值模拟的原因和影响

摘要

Where two lithospheric plates converge on the Earth, one of them disappears into the mantle. The dominant driving mechanism for plate motion is regarded to be `slab pull': the subducted plate, the slab, exerts a pulling force on the attached plate at the surface. However, what has been puzzling geodynamicists since their discovery in the seventies, is that shallow, almost horizontal subduction, as occurring below Peru or Central Chile, does not fit into this simple picture. This forms the motivation for this study. Several proposed mechanisms for shallow flat subduction are investigated by means of numerical modeling experiments using a thermo-chemical convection code.Active trenchward motion of the overlying lithosphere can force young, and weak oceanic lithosphere to subduct without the presence of a significant slab and associated slab pull, and may lead to shallow flat subduction, in this case called lithospheric doubling. A weak, preexisting lithospheric fault system and a lubricating oceanic crust are required to continue the convergence during flat subduction. A relatively strong mantle fixes the oceanic plate while being overridden, and prevents the slab from descending more steeply through this mantle. Lithospheric doubling pushes underlying mantle material through the major mantle phase transitions at 400 and 670 km depth. The resultant latent heat may increase the flat slab length significantly, up to 400 km.An alternative explanation for the occurrence of shallow flat slabs is the subduction of oceanic plateaus, aseismic ridges or seamount chains. These oceanic features all have a thickened crust (up to 35 km), which give rise to an increased buoyancy of the subducting plate. The amount of metastable basalt must be substantial to keep the plateau sufficiently buoyant. Bending the slab to the horizontal requires the slab strength to be limited to about 600 MPa, and its age to about 60 Ma. The flat subduction below Peru is most likely to be caused by both described mechanisms, since South America has a 3-cm/yr westward absolute plate motion, and the subduction of the Nazca Ridge oceanic plateau occurs below Peru. Only a small range of the average upper mantle viscosity and basalt-to-eclogite reaction rates can explain the observed slab geometry. The effect of the overriding lithosphere is estimated to be one to two times larger than the effect of the plateau subduction.Finally, the viability of the present-day subduction processes in a younger, hotter Earth is quantified. Higher mantle temperatures resulted in more partial melting and a thicker oceanic crust, comparable to present-day oceanic plateaus. Flat buoyant subduction has therefore been suggested to have been more important in a younger Earth. Model results, however, suggest that already for a modest increase of the mantle temperature less than about 75 K, the mantle becomes too weak to support flat subduction. Modern-type Benioff subduction remains a viable tectonic process for potential temperatures of at least 150 K higher than today, but for higher mantle temperatures, crustal delamination or slab detachment prohibits a continuous subduction process.
机译:地球上两个岩石圈板块汇合之处,其中一个消失在地幔中。板运动的主要驱动机制被认为是“板拉力”:俯冲板(板)在表面的附着板上施加拉力。但是,自70年代发现以来,一直困扰着地球动力学学家的是,秘鲁或智利中部以下发生的浅,几乎是水平俯冲的现象并不适合这种简单情况。这构成了本研究的动机。通过使用热化学对流代码的数值模拟实验,研究了几种提出的浅层俯冲机制。上覆岩石圈的主动地向运动可以迫使年轻而脆弱的海洋岩石圈俯冲而没有明显的板块和相关板块的存在。拉力作用,并可能导致浅层俯冲,在这种情况下称为岩石圈加倍。在平坦俯冲过程中,需要一个薄弱的,已经存在的岩石圈断层系统和一个润滑的海洋地壳才能继续收敛。相对强壮的地幔在被覆盖时固定洋洋板块,并防止板块通过该地幔更陡峭地下降。岩石圈加倍推动下地幔物质通过400和670 km深度的主要地幔相变。产生的潜热可能会显着增加平板的长度,最高可达400 km。浅平板的出现的另一种解释是俯冲了大洋高原,抗震脊或海山链。这些海洋特征都具有增厚的地壳(长达35公里),这导致俯冲板的浮力增加。亚稳态玄武岩的量必须足够大,以保持高原足够的浮力。将板弯曲到水平需要将板强度限制为约600 MPa,并且将其寿命限制为约60 Ma。秘鲁之下的平坦俯冲最有可能是由上述两种机制引起的,因为南美具有每年向西3 cm的绝对板块运动,而纳斯卡岭大洋高原的俯冲发生在秘鲁之下。平均上地幔粘度和玄武岩与榴辉岩的反应速率只有很小的范围可以解释所观察到的板坯几何形状。估计上覆岩石圈的作用是高原俯冲作用的一到二倍。最后,定量了当今俯冲作用在一个更年轻,更热的地球中的生存能力。较高的地幔温度导致更多的部分融化和更厚的海洋地壳,这与当今的海洋高原相当。因此,人们建议在年轻的地球中平坦浮力俯冲更为重要。然而,模型结果表明,对于地幔温度的适度升高(小于约75 K),地幔变得太弱而无法支撑平坦俯冲。现代类型的贝尼奥夫俯冲作用仍然是可行的构造过程,其潜在温度比今天高出至少150 K,但对于更高的地幔温度,地壳分层或板块剥离阻止了连续的俯冲过程。

著录项

  • 作者

    Hunen Jeroen van;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类
  • 入库时间 2022-08-20 21:06:45

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号