首页> 外文OA文献 >Discontinuous Galerkin Finite Element Methods for Maxwellu27s Equations in Dispersive and Metamaterials Media
【2h】

Discontinuous Galerkin Finite Element Methods for Maxwellu27s Equations in Dispersive and Metamaterials Media

机译:分散和超材料介质中maxwell u27s方程的间断Galerkin有限元方法

摘要

Discontinuous Galerkin Finite Element Method (DG-FEM) has been further developed in this dissertation. We give a complete proof of stability and error estimate for the DG-FEM combined with Runge Kutta which is commonly used in different fields. The proved error estimate matches those numerical results seen in technical papers. Numerical simulations of metamaterials play a very important role in the design of invisibility cloak, and sub-wavelength imaging. We propose a leap-frog discontinuous Galerkin Finite Element Method to solve the time-dependent Maxwellu27s equations in metamaterials. The stability and error estimate are proved for this scheme. The proposed algorithm is implemented and numerical results supporting the analysis are provided. The wave propagation simulation in the double negative index metamaterials supplemented with perfectly matched layer (PML) boundary is given with one discontinuous Galerkin time difference method (DGTD), of which the stability and error estimate are proved as well in this dissertation. To illustrate the effectiveness of this DGTD, we present some numerical result tables which show the consistent convergence rate and the simulation of PML in metamaterials is tested in this dissertation as well. Also the wave propagation simulation in metamaterals by this DGTD scheme is consistent with those seen in other papers. Several techniques have appeared for solving the time-dependent Maxwellu27s equations with periodically varying coefficients. For the first time, I apply the discontinuous Galerkin (DG) method to this homogenization problem in dispersive media. For simplicity, my focus is on obtaining a solution in two-dimensions (2D) using 2D corrector equations. my numerical results show the DG method to be both convergent and efficient. Furthermore, the solution is consistent with previous treatments and theoretical expectations.
机译:本文进一步发展了非连续伽勒金有限元方法(DG-FEM)。我们为DG-FEM与Runge Kutta结合使用提供了完整的稳定性和误差估计,这是在不同领域中常用的。经证明的误差估计与技术论文中看到的数值结果相符。超材料的数值模拟在隐形斗篷和亚波长成像的设计中起着非常重要的作用。为了解决超材料中时间相关的麦克斯韦方程组,我们提出了一种蛙跳间断的Galerkin有限元方法。证明了该方案的稳定性和误差估计。实现了所提出的算法,并提供了支持分析的数值结果。通过一种不连续的Galerkin时差法(DGTD),给出了在完全匹配层边界(PML)为辅的双负指数超材料中的波传播模拟,并证明了其稳定性和误差估计。为了说明该DGTD的有效性,我们提供了一些数值结果表,这些表显示了一致的收敛速度,并且本文还测试了超材料中PML的仿真。同样,通过该DGTD方案在金属材料中进行波传播仿真与在其他论文中看到的一致。已经出现了几种解决系数随时间变化的随时间变化的麦克斯韦方程的技术。第一次,我将不连续Galerkin(DG)方法应用于分散介质中的均匀化问题。为简单起见,我的重点是使用2D校正器方程获得二维(2D)解决方案。我的数值结果表明DG方法既收敛又高效。此外,该解决方案与先前的处理方法和理论期望是一致的。

著录项

  • 作者

    Waters Jiajia;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号