首页> 外文OA文献 >Tracking of Rhythmical Biomedical Signals Using the Maximum A Posteriori Adaptive Marginalized Particle Filter
【2h】

Tracking of Rhythmical Biomedical Signals Using the Maximum A Posteriori Adaptive Marginalized Particle Filter

机译:用最大后验自适应边缘粒子滤波器跟踪节律生物医学信号

摘要

Biomedical signals are often rhythmical and their morphologies change slowly over time. Arterial blood pressure and electrocardiogram signals are good examples with such property. It is of great interest to extract clinically useful information such as the instantaneous frequency (i.e. heart rate) and morphological changes (e.g. pulse pressure variation) from these signals. Conventional filtering methods such as the Kalman filter are not suitable for estimating the instantaneous frequency of quasiperiodic signals due to the non-Gaussian multi-modal property of its posterior distribution. One possible alternative is particle filters that are increasingly used for nonlinear systems and non-Gaussian posterior state distributions. However, canonical particle filters suffer from the problems of sample degeneracy and sample impoverishment and are not well suited to non-Gaussian multi-modal distributions. This paper describes two new algorithms that integrate the marginalized particle filter and maximum a-posterior particle filter and demonstrates challenging cases where the proposed algorithms outperform the conventional marginalized particle filter using both synthetic and real electrocardiogram signals.
机译:生物医学信号通常具有节奏感,其形态会随时间缓慢变化。具有这种特性的动脉血压和心电图信号就是很好的例子。从这些信号中提取诸如瞬时频率(即心率)和形态变化(例如脉搏压力变化)之类的临床有用信息是非常令人感兴趣的。诸如卡尔曼滤波器之类的常规滤波方法由于其后验分布的非高斯多模态性质而不适用于估计准周期信号的瞬时频率。一种可能的选择是越来越多地用于非线性系统和非高斯后态分布的粒子滤波器。然而,规范的粒子滤波器存在样本退化和样本贫乏的问题,并且不适用于非高斯多峰分布。本文介绍了两种将边缘化粒子滤波器和最大后方粒子滤波器集成在一起的新算法,并论证了具有挑战性的情况,其中所提出的算法在合成和真实心电图信号方面均优于常规边缘化粒子滤波器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号