首页> 外文OA文献 >Comparison of catalytic ethylene polymerization in slurry and gas phase
【2h】

Comparison of catalytic ethylene polymerization in slurry and gas phase

机译:催化乙烯在淤浆和气相中的聚合反应比较

摘要

Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes.udThis work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different properties and extremely different reaction behaviour even if the same Ziegler-Natta (ZN) catalyst is used? Generally, it is known that the reason can be found in the differences of local conditions near active sites of ZN catalysts – the question is: which conditions are relevant? How do they interact? To answer these questions, a large number of single- and multi-stage experiments using TIBA as co-catalyst has been carried out in a 1.6-L reactor varying the following parameters:ud- amount of hexane (going from gas phase to slurry)ud- pre-contacting time catalyst – cocatalystud- hydrogen pressure (0 to 10 bar)ud- temperature (40 to 90°C)ud- ethylene pressure (1 to 12 bar)udIsothermal-isobaric polymerization rate-profiles were analyzed in terms of activation and deactivation behaviour and the PE products were characterized by molecular weight distribution (MWD), particle size distribution (PSD), crystallinity and in some special cases by TEM and SEM images.udThis combination of methods allowed us to identify and explain a number of significant differences between slurry and gas phase processes. Finally, all these findings were concentrated in a new theoretical contribution, which we called GRAF (i.e. “Growth Rate Acceleration by Fragmentation”):ud1- Gas-phase rate-profiles show rapid initiation followed by rapid decay (decay type), whereas slurry profiles show the “build up type curve” with long-lasting constant activity after initiation.ud2- It was shown that hexane is not at all “inert” – it affects all the relevant transport and equilibrium conditions. Varying the amount of solvent could dramatically change the reaction rate profiles.ud3- The higher the temperature, the lower the molecular weight and consequently the lower the molecular weight – common for both processes.ud4- By increasing the temperature in slurry with the presence of hydrogen; the higher mobility of freshly produced polymers leads to faster crystallization. More and larger lamellae increase the brittleness of the particle. This promotes the fragmentation that can lead – in an extreme case – to fines generation.ud5- Internal and external particle fragmentation, as a physical effect, generates new active sites, which in turn leads to a faster chemical reaction.ud6- Faster fragmentation accompanied by faster generation of new active sites (GRAF) at a higher ethylene pressure leads to a higher initial slope of the rate curves.ud7- Varying ethylene pressure either in slurry or gas phase experimentally confirmed the first order ethylene pressure dependency.ud8- It was shown that increasing ethylene pressure might increase the solubility of hydrogen in the polymer structure leading to termination of more chains by hydrogen transfer. By introducing a “solubility function”, it was explained why the hydrogen concentration increases with increasing ethylene pressure. The change of the molecular weight as function of the ethylene pressure can be described by the following equation in which X is the hydrogen: ethylene pressure ratio: ........][12222mCHCptSCptAptMnPXkPkkPkAkkkM+++≈ud9- One of the most spectacular results was the “counter effect of hydrogen”. In the gas-phase, the reaction rate decreases with increasing hydrogen pressure; but the opposite effect was found in the slurry phase.ud10- Hydrogen shows a similarly strong effect on the molecular weight of the polymer produced in either gas or slurry. In the absence of hydrogen, we found slightly lower molecular weights in slurry compared to the gas-phase.ud11- DSC results confirm that hydrogen addition increases the level of crystallinity coupled with a simultaneous decrease in the melting temperature. This correlates with the higher chain mobility of shorter chains. Increasing the level of crystallinity can dramatically increase the production of fines in both phases and can change the particle size distribution accordingly if the brittleness of the crystalline particles and the growth stress reach critical levels (i.e. a crystallinity degree of 75%)ud12- The polymer mobility is influenced by many variables such as:ud- temperatureud- chain length of the polymer producedud- chain length of the dead polymer that surrounds the active sites (“matrix”)ud- hexane content in the amorphous part of the polymer matrix that changes the micro-viscosity. This different chain mobility leads to differences regarding the in-situ crystallinity, which has a direct impact on the particle brittleness. As a result, the particle can break at a critical growth stress that increases with the polymerization rate. This was the core result for the GRAF development. It is now very clear that this effect can affect the polymerization rate profiles in slurry and gas-phase polymerization differently due to different sorption, swelling and micro conditions around the active centres.ud13- Two-stage experiments in different phases were carried out by varying the ethylene and hydrogen pressures to prove the GRAF hypothesis. A quick change of polymerization conditions (in the 2nd step) does not always lead to the same results of the one-stage experiments performed in the same conditions, since the history of the particle (defined by the 1st polymerization step) must determine the response – an effect that is explainable with GRAF.ud14- Depending on which kind of PE – ductile or brittle - is produced in which step of the two-stage polymerization, one can produce particles with identical crystallinity and MWD, but with absolutely different fragmentation behaviour.ud15- The hydrogen enhancement effect – in combination with the disintegration of particles leading to new active site generation – happens if hydrogen is introduced at the beginning of the polymerization. Producing ductile polymer in the 1st step decreases the fragmentation-controlled enhancement effect of hydrogen.ud16- In general, the presence of ductile PE does not suppress particle fragmentation and the resulting rate enhancement completely, but the particle disintegration can still be reduced dramatically. This is a useful tool for optimizing a catalyst.ud17- Removing hydrogen increases the reaction rate by the well-known “chemical effect”, for which different explanations exist.ud18- The activity during the 2nd step depends strongly on what degree of fragmentation was reached in the 1st stage. However, for activation of new sites after fragmentation, the presence of the co-catalyst is required – “back-diffusion limitation”, and the “dilution effect” can partially compensate the rate accelerating fragmentation effect.ud19- The lowest fines generation was found in a two-stage gas phase polymerization for bimodal PE production: the 1st step without hydrogen (making ductile PE) and the 2nd step with high hydrogen pressure (crystalline PE distributed within the ductile phase).ud20- Changing the polymer matrix properties during switching from 1st to 2nd step conditions (by means of cooling, pressurizing, depressurizing, hexane evaporation, re-pressurizing) can influence both rate profiles and PSD. This is especially the case when performing the 1st step in slurry under high hydrogen pressures and the 2nd step in the gas-phase.ud21- It is useful to analyze the MWD by deconvolution in terms of the GRAF hypothesis. The chain mobility plays an important role. In multi-stage polymerizations, the MWD is a fingerprint of the polymerization rate of each step: the amount of polymer produced in each step can be predicted from the MWD.
机译:聚乙烯(PE)2007年的年消耗量为7,000万吨,主要通过淤浆,气相或两种工艺的组合生产。 ud这项工作着重于淤浆和气相工艺之间的比较。为什么即使使用相同的Ziegler-Natta(ZN)催化剂,在这两个过程中生产的PE仍会表现出截然不同的性能和截然不同的反应行为?通常,众所周知,可以在ZN催化剂活性位点附近的局部条件差异中找到原因–问题是:哪些条件相关?他们如何互动?为了回答这些问题,已经在1.6升反应器中使用TIBA作为助催化剂进行了大量的单阶段和多阶段实验,改变了以下参数: ud-己烷量(从气相到淤浆) ) ud-预接触时间催化剂-助催化剂 ud-氢气压力(0至10 bar) ud-温度(40至90°C) ud-乙烯压力(1至12 bar) ud等温-等压聚合速率通过活化和失活行为分析了分布曲线,并通过分子量分布(MWD),粒度分布(PSD),结晶度以及在某些特殊情况下通过TEM和SEM图像对PE产品进行了表征。我们确定并解释了浆液和气相工艺之间的许多重大差异。最后,所有这些发现都集中在一个新的理论贡献上,我们称其为GRAF(即“通过碎裂促进生长速率加速”): ud1-气相速率曲线显示快速启动,然后快速衰减(衰减类型),而淤浆曲线显示出引发后具有持久恒定活性的“堆积型曲线”。 ud2-表明己烷根本不是“惰性”的,它会影响所有相关的运输和平衡条件。改变溶剂的量可以显着改变反应速率曲线。 ud3-温度越高,分子量越低,因此分子量越低-这两种方法都常见。 ud4-氢的存在新鲜生产的聚合物的较高迁移率导致更快的结晶。越来越大的薄片增加了颗粒的脆性。这会促进碎片的产生,在极端情况下会导致产生细粉。 ud5-内部和外部的粒子碎片,作为一种物理作用,会产生新的活性位点,进而导致更快的化学反应。 ud6-更快碎裂,伴随着更高的乙烯压力更快地产生新的活性位点(GRAF),导致速率曲线的初始斜率更高。 ud7-浆液或气相中变化的乙烯压力通过实验证实了一级乙烯压力依赖性。 ud8-表明增加的乙烯压力可能会增加氢在聚合物结构中的溶解度,从而通过氢转移终止更多的链。通过引入“溶解度函数”,解释了为什么氢浓度随着乙烯压力的增加而增加。分子量随乙烯压力的变化可以通过以下等式描述,其中X是氢:乙烯压力比:........] [12222mCHCptSCptAptMnPXkPkkPkAkkkM +++≈ ud9-最引人注目的之一结果就是“氢的反作用”。在气相中,反应速率随着氢气压力的增加而降低;但是,在淤浆相中却发现了相反的效果。ud10-氢气对气体或淤浆中生产的聚合物的分子量表现出相似的强烈影响。在不存在氢气的情况下,我们发现浆液中的分子量与气相相比要略低。 ud11- DSC结果证实,添加氢气可提高结晶度,同时降低熔融温度。这与较短链的较高链移动性相关。如果结晶颗粒的脆性和生长应力达到临界水平(即结晶度为75%) ud12-,则增加结晶度可显着增加两个相中细粉的产量,并可相应地更改粒径分布。聚合物的迁移率受许多变量影响,例如: ud-温度所生产聚合物的ud-链长度包围活性位点(“基质”)的死聚合物的ud-链长度无定形物中的ud-己烷含量改变微粘度的聚合物基质的一部分。这种不同的链迁移率导致就地结晶度的差异,这直接影响颗粒的脆性。结果是,颗粒可以在临界增长应力下破裂,该增长应力随着聚合速率的增加而增加。这是GRAF开发的核心成果。现在非常清楚的是,由于活性中心周围的吸附,溶胀和微观条件不同,这种影响对淤浆和气相聚合反应的聚合速率分布的影响也不同。 ud13-通过在不同阶段进行两阶段实验改变乙烯和氢气压力以证明GRAF假设。快速改变聚合条件(在第二步中)并不总是会导致在相同条件下进行的一步实验的结果相同,因为颗粒的历史(由第一聚合步骤定义)必须确定响应-用GRAF可以解释的效果。 ud14-根据在两阶段聚合的哪一步中生产哪种PE(韧性或脆性),人们可以生产出具有相同结晶度和MWD,但具有完全不同的碎裂的颗粒行为。 ud15-如果在聚合反应开始时引入氢,则会发生氢的增强作用(与导致新的活性位点生成的颗粒的分解结合)。在第一步中生产可延展聚合物会降低氢的碎裂控制增强效果。 ud16-通常,可延展PE的存在不会抑制颗粒碎裂,并且不会完全抑制生成的速率,但仍可以显着降低颗粒崩解。这是优化催化剂的有用工具。 ud17-通过众所周知的“化学作用”除去氢可提高反应速率。 ud18-第二步的活性很大程度上取决于反应的程度在第一阶段达到碎片化。但是,对于碎片化后新位点的活化,需要存在助催化剂–“反向扩散限制”,“稀释效应”可以部分补偿速率加快的碎片化效应。 ud19-产生的最低罚款是在用于双峰PE生产的两阶段气相聚合反应中发现:第一步没有氢(生成延性PE),第二步是高氢压(结晶PE分布在延性相中)。 ud20-更改聚合物基体性能在从第一步切换到第二步的过程中,条件(通过冷却,加压,降压,己烷蒸发,再加压)会影响速率分布和PSD。在高氢气压下在浆料中进行第一步,在气相中进行第二步时尤其如此。 ud21-根据GRAF假设通过反卷积分析MWD很有用。链的流动性起着重要的作用。在多阶段聚合中,MWD是每个步骤聚合速率的指纹:可以从MWD预测每个步骤中生成的聚合物量。

著录项

  • 作者

    Daftaribesheli Majid;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号