首页> 外文OA文献 >Theoretical and spectroscopic studies of energy and charge transport in organic semiconductors
【2h】

Theoretical and spectroscopic studies of energy and charge transport in organic semiconductors

机译:有机半导体中能量和电荷传输的理论和光谱研究

摘要

The performance of organic semiconductor devices is heavily dependent on the precise molecular-level arrangement and overall morphology of the functional layers. In organic photovoltaic applications, exciton mobility, fission/fusion or dissociation, as well as charge transport and separation are some of the morphology-dependent processes that are of interest for efficient device design. In this work a combination of experimental and computational techniques are used to elucidate the behaviour of excitons in conjugated polymer and small-molecule semiconductor systems. While there is an emphasis on photovoltaic applications, many concepts are generally applicable to other organic electronic applications such organic light emitting diodes and photodetectors. In Chapter 3, a pump-push-probe transient absorption technique is used to observe high-energy “hot” excitons formed by photoexcitation of the conjugated polymer poly(3-hexylthiophene) (P3HT). The work demonstrates the ability to clearly isolate the transient signal of the hot exciton decay processes from the thermalised exciton population, where picosecond and sub-picosecond relaxation of hot excitons through torsional motion in the disordered polymer chain is observed. In addition, the push-induced dissociation of high-energy excitons into free charge carriers is able to be quantified and an upper bound on the exciton binding energy determined. Spectroscopic experiments on P3HT are accompanied by a hybrid quantum-classical exciton hopping model in Chapter 4. Coarse-grained molecular dynamics are used to obtain realistic structures of P3HT free chains and nanofibre aggregates, to which a Frenkel–Holstein exciton model and Monte Carlo hopping simulation is applied. This novel approach captures exciton transport properties of polymer systems with a monomer-level of detail unachievable with continuum or lattice style models, but at a large scale infeasible with fully quantum calculations. Reasonable quantitative agreement with experimental observables is obtained, offering insight into the morphology-dependence of exciton transport in conjugated polymers. In particular, the observed tendency for exciton migration to the core of the polymer aggregate can explain the relatively poor performance of highly crystalline or nanofibre-based polymer solar cells, as well as the unusually high fluorescence yield of aqueous P3HT nanoparticles. The effect of disorder in small molecule semiconductor films is investigated in Chapter 5 in the context of singlet exciton fission and triplet fusion under the influence of applied magnetic fields. A model is presented that extends the historical theory of molecular spin interactions in crystalline materials and corrects the current understanding in the literature regarding such disordered solid-phase systems. The possibility of using the fluorescence response to magnetic fields to probe the morphology and degree disorder in the films is demonstrated. Extending the model to solution-phase behaviour is then discussed in Chapter 6, where the potential of improving the light-harvesting ability of solar cells through a molecular triplet–triplet annihilation upconversion process is considered. Molecular dynamics simulations are used to obtain physical parameters and collision geometry of the emitter molecules in solution. The complications of applying a static model of triplet fusion to the dynamic solution-phase behaviour are elucidated and the potential of synthesising an ideal upconversion emitter molecule is discussed.
机译:有机半导体器件的性能在很大程度上取决于功能层的精确分子级排列和整体形态。在有机光伏应用中,激子迁移率,裂变/融合或解离以及电荷传输和分离是一些依赖于形态学的过程,这些过程对于有效的器件设计非常重要。在这项工作中,结合了实验和计算技术来阐明激子在共轭聚合物和小分子半导体系统中的行为。尽管着重于光伏应用,但是许多概念通常适用于其他有机电子应用,例如有机发光二极管和光电检测器。在第3章中,使用泵-推-探针瞬态吸收技术来观察由共轭聚合物聚(3-己基噻吩)(P3HT)的光激发形成的高能“热”激子。这项工作证明了能够从热激子群中清楚地分离出热激子衰变过程的瞬态信号的能力,在激子群中,通过无序聚合物链中的扭转运动,观察到了热激子的皮秒和亚皮秒松弛。此外,能够定量推导诱导的高能激子解离成自由电荷载体,并确定激子结合能的上限。在P3HT上进行的光谱实验伴随有第4章中的混合量子经典激子跳跃模型。粗粒度的分子动力学用于获得P3HT自由链和纳米纤维聚集体的真实结构,Frenkel–Holstein激子模型和Monte Carlo跳跃模拟被应用。这种新方法用连续体或晶格样式模型无法实现的,但具有单体级细节的聚合物级来捕获聚合物系统的激子输运性质,但在大规模量子计算中却无法实现。获得了与实验观察物的合理的定量一致性,从而提供了对共轭聚合物中激子传输的形态依赖性的深入了解。特别地,观察到的激子迁移至聚合物聚​​集体的核心的趋势可以解释高度结晶或基于纳米纤维的聚合物太阳能电池相对较差的性能,以及水性P3HT纳米粒子的荧光产率异常高。在第五章中,在施加磁场的影响下,单重态激子裂变和三重态聚变的背景下研究了小分子半导体膜中无序的影响。提出了一个模型,该模型扩展了晶体材料中分子自旋相互作用的历史理论,并纠正了文献中有关此类无序固相系统的当前理解。证明了利用磁场的荧光响应来探测薄膜的形态和程度紊乱的可能性。然后在第6章中讨论了将模型扩展到溶液相行为的问题,其中考虑了通过分子三重态-三重态an灭上转换过程提高太阳能电池的光捕获能力的潜力。分子动力学模拟用于获得溶液中发射体分子的物理参数和碰撞几何形状。阐明了将三重态融合静态模型应用于动态溶液相行为的复杂性,并讨论了合成理想的上转换发射极分子的潜力。

著录项

  • 作者

    Tapping Patrick Charles;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号