首页> 外文OA文献 >Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges
【2h】

Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges

机译:中洋脊玄武岩的岩石系统学:海脊下熔体生成的制约因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mid-ocean ridge basalts (MORB) are a consequence of pressure-release melting beneath ocean ridges, and contain much information concerning melt formation, melt migration and heterogeneity within the upper mantle. MORB major element chemical systematics can be divided into global and local aspects, once they have been corrected for low pressure fractionation and interlaboratory biases. Regional average compositions for ridges unaffected by hot spots (“normal” ridges) can be used to define the global correlations among normalized Na2O, FeO, TiO2 and SiO2 contents, CaO/Al2O3 ratios, axial depth and crustal thickness. Back-arc basins show similar correlations, but are offset to lower FeO and TiO2 contents. Some hot spots, such as the Azores and Galapagos, disrupt the systematics of nearby ridges and have the opposite relationships between FeO, Na2O and depth over distances of 1000 km.Local variations in basalt chemistry from slow- and fast-spreading ridges are distinct from one another. On slow-spreading ridges, correlations among the elements cross the global vector of variability at a high angle. On the fast-spreading East Pacific Rise (EPR), correlations among the elements are distinct from both global and slow-spreading compositional vectors, and involve two components of variation. Spreading rate does not control the global correlations, but influences the standard deviations of axial depth, crustal thickness, and MgO contents of basalts.Global correlations are not found in very incompatible trace elements, even for samples far from hot spots. Moderately compatible trace elements for normal ridges, however, correlate with the major elements. Trace element systematics are significantly different for the EPR and the mid-Atlantic Ridge (MAR). Normal portions of the MAR are very depleted in REE, with little variability; hot spots cause large long wavelength variations in REE abundances. Normal EPR basalts are significantly more enriched than MAR basalts from normal ridges, and still more enriched basalts can erupt sporadically along the entire length of the EPR. This leads to very different histograms of distribution for the data sets as a whole, and a very different distribution of chemistry along strike for the two ridges. Despite these differences, the mean Ce/Sm ratios from the two ridges are identical.Existing methods for calculating the major element compositions of mantle melts [Klein and Langmuir, 1987; McKenzie and Bickle, 1988; Niu and Batiza, 1991] are critically examined. New quantitative methods for mantle melting and high pressure fractionation are developed to evaluate the chemical consequences of melting and fractionation processes and mantle heterogeneity. The new methods rely on new equations for partition coefficients for the major elements between mantle minerals and melts. The melting calculations can be used to investigate the chemical compositions produced by small extents of melting or high pressures of melting that cannot yet be determined experimentally. Application of the new models to the observations described above leads to two major conclusions: (1) The global correlations for normal ridges are caused by variations in mantle temperature, as suggested by Klein and Langmuir [1987] and not by mantle heterogeneity. (2) Local variations are caused by melting processes, but are not yet quantitatively accounted for. On slower spreading ridges, local variations are controlled by the melting regime in the mantle. On the EPR, local variations are predominantly controlled by ubiquitous, small scale heterogeneites. Volatile content may be an important and as yet undetermined factor in affecting the observed variations in major elements.We propose a hypothesis, similar to one proposed by Allegre et al [1984] for isotopic data, to explain the differences between the Atlantic and Pacific local trends, and the trace element systematics of the two ocean basins, as consequences of spreading rate and a different distribution of enriched components from hot spots in the two ocean basins. In the Atlantic, the hot spot influence is in discrete areas, and produces clear depth and chemical anomalies. Ridge segments far from hot spots do not contain enriched basalts. Melting processes associated with slow-spreading ridges vary substantially over short distances along strike and lead to the local trends discussed above, irrespective of hot spot influence. In the Pacific, enriched components appear to have been more thoroughly mixed into the mantle, leading to ubiquitous small scale heterogeneities. Melting processes do not vary appreciably along strike, so local chemical variations are dominated by the relative contribution of enriched component on short time and length scales. Thus the extent of mixing and distribution of enriched components influences strongly the contrasting local major element trends. Despite the difference in the distribution of enriched components, the mean compositions of each data set are equivalent. This suggests that the hot spot influence is similar in the two ocean basins, but its distribution in the upper mantle is different. These contrasting relationships between hot spots and ridges may result from differences in both spreading rate and tectonic history. Unrecognized hot spots may play an important role in diverse aspects of EPR volcanism, and in the chemical systematics of the erupted basalts.The observations and successful models have consequences for melt formation and segregation. (1) The melting process must be closer to fractional melting than equilibrium melting. This result is in accord with inferences from abyssal peridotites [Johnson et al., 1990]. (2) Small melt fractions generated over a range of pressures must be extracted rapidly and efficiently from high pressures within the mantle without experiencing low pressure equilibration during ascent. This requires movement in large channels, and possibly more efficient extraction mechanisms than nonnally envisaged in porous flow models with small residual porosity. (3) Diverse melts from the melting regime produce variations in basalts that are observable at the surface. (4) Basalt data can be used to constrain the melting process (e.g. active vs. passive upwelling) and its relationship to segmentation. The data cannot be used to constrain the shape of the melting regime, however, for many shapes lead to similar chemical results. (5) Highly incompatible elements and U-series disequilibria results appear not yet to be explained by melting models, and may require additional processes not yet clearly envisaged.
机译:中洋洋脊玄武岩(MORB)是海洋洋脊下方压力释放融化的结果,其中包含有关上地幔内部熔体形成,熔体迁移和非均质性的许多信息。一旦针对低压分馏和实验室间偏差进行了校正,MORB主要元素化学系统可以分为全局和局部两个方面。不受热点影响的区域(“正常”区域)的区域平均成分可用于定义归一化的Na2O,FeO,TiO2和SiO2含量,CaO / Al2O3比例,轴向深度和地壳厚度之间的全局相关性。后弧盆地显示出相似的相关性,但被较低的FeO和TiO2含量所抵消。亚速尔群岛和加拉帕戈斯群岛等一些热点破坏了附近山脊的系统,并且在1000 km距离内,FeO,Na2O与深度之间存在相反的关系。另一个。在缓慢扩展的山脊上,元素之间的相关性以高角度穿越了变异性的整体矢量。在快速蔓延的东太平洋上升(EPR)上,元素之间的相关性与全局和缓慢扩展的成分向量都不同,并且涉及两个变化成分。扩散速率并不能控制全局相关性,但会影响玄武岩的轴向深度,地壳厚度和MgO含量的标准偏差,即使在远离热点的样品中,也不会发现非常不相容的微量元素中的全局相关性。但是,正常脊的适度兼容的痕量元素与主要元素相关。 EPR和大西洋中脊(MAR)的痕量元素系统特征明显不同。 MAR的正常部分的REE非常贫乏,几乎没有变化。热点会导致REE丰度发生较大的长波长变化。普通的EPR玄武岩比普通脊上的MAR玄武岩富集得多,而且富集的玄武岩可以在EPR的整个长度上零星地喷发。这导致整个数据集的直方图分布非常不同,并且两个脊的走向沿化学分布也非常不同。尽管存在这些差异,但两个脊的平均Ce / Sm比是相同的。现有的用于计算地幔熔体主要元素组成的方法[Klein and Langmuir,1987; McKenzie和Bickle,1988年; Niu和Batiza,1991]进行了严格审查。开发了用于地幔融化和高压分馏的新的定量方法,以评估融化和分馏过程以及地幔异质性的化学后果。新方法依靠新的方程式来确定地幔矿物和熔体之间主要元素的分配系数。熔解计算可用于研究由小范围的熔解或高压熔解产生的化学组成,尚无法通过实验确定。将新模型应用于上述观测结果得出两个主要结论:(1)正常脊的整体相关性是由地幔温度的变化引起的,正如克莱因和朗缪尔[1987]所建议的那样,而不是由地幔异质性引起的。 (2)局部变化是由熔化过程引起的,但尚未量化。在较慢的扩散脊上,局部变化受地幔融化状态控制。在EPR上,局部变化主要由普遍存在的小规模异质岩控制。挥发性成分可能是影响观测到的主要元素变化的重要且尚未确定的因素。我们提出了一种假设,类似于Allegre等人[1984]提出的同位素数据假设,用以解释大西洋和太平洋局部地区之间的差异。趋势和两个海洋盆地的微量元素系统,这是两个海洋盆地的热点地区分布速度和富集成分分布不同的结果。在大西洋,热点影响位于离散区域,并产生明显的深度和化学异常。远离热点的山脊段不含丰富的玄武岩。与热点缓慢蔓延有关的融化过程在沿罢工的短距离内会发生很大变化,并导致上述局部趋势,而与热点影响无关。在太平洋地区,富集的成分似乎已更彻底地混入地幔中,导致普遍存在的小规模异质性。熔炼过程不会因触击而发生明显变化,因此局部化学变化受富组分在短时间和长度范围内的相对影响所支配。因此,富集成分的混合和分布程度强烈影响了形成对比的局部主要元素趋势。尽管富集成分的分布有所不同,每个数据集的平均组成是等效的。这表明热点影响在两个海盆中是相似的,但是在上地幔中的分布是不同的。热点和山脊之间的这些对比关系可能是由于传播速度和构造历史的差异所致。无法识别的热点可能在EPR火山的各个方面以及玄武岩喷发的化学系统中都起着重要作用。观测和成功的模型对熔体的形成和偏析具有影响。 (1)熔化过程必须比平衡熔化更接近分数熔化。这个结果与深渊橄榄岩的推论一致[Johnson et al。,1990]。 (2)必须在上升过程中快速有效地从地幔内的高压中提取在一定压力范围内产生的少量熔体馏分,而不会出现低压平衡。这需要在大通道中移动,并且可能需要比在具有较小残留孔隙率的多孔流模型中非常规地设想的更有效的提取机制。 (3)融化过程中产生的各种熔体产生玄武岩变化,这些玄武岩在表面可见。 (4)玄武岩数据可用于约束融化过程(例如主动上升流与被动上升流)及其与分段的关系。该数据不能用于约束熔化状态的形状,但是,由于许多形状会导致相似的化学结果。 (5)高度不相容的元素和U系列不平衡结果似乎尚未由解链模型解释,并且可能需要尚未明确设想的其他过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号