首页> 外文OA文献 >Modelling and optimisation of microfluidic devices for bioanalysis applications
【2h】

Modelling and optimisation of microfluidic devices for bioanalysis applications

机译:用于生物分析应用的微流体装置的建模和优化

摘要

The small size of integrated microfluidic systems offers many advantages such as cost, speed and portability for bioanalysis applications. However, due to the small scale the careful consideration of the transport of analytes in the bulk of the integrated microfluidic system and the interaction of analytes with surface immobilised analyte recognition molecules (receptors) is crucial for an efficient device operation. This thesis is concerned with the mathematical analysis and optimisation of the convective and diffusive transport of analytes and the analyte-receptor interaction in integrated microfluidic affinity systems with the aim of creating design guidelines for more efficient bioanalysis systems.The first part of this thesis considers device configurations where every analyte molecule can reach the surface immobilised receptors. In this case, which is important for sensing and separation applications, the transport-reaction model is solved analytically. This analytical solution is analysed for two bioanalytical applications: (i) affinity separation and (ii) affinity sensing. For fast analyte-receptor interactions, which are essential for affinity separation systems, the analysis of the analytical solution reveals simple expressions for the retention and the dispersion of the analyte due to the interaction with the receptors. With these expressions, which depend only on global device parameters, a framework for the design of multiplexed separation systems for the separation of proteins from complex sample mixtures is developed. Subsequently, the analytical solution of the transport-reaction model is used in the derivation of improved design strategies for microfluidic affinity sensors for the detection of analytes from small sample plugs. Three design strategies, which achieve a high capture fraction and a significantly increased uniformity of the bound analyte concentration over the sensor surface, are presented. The first two strategies rely on the variation of one device parameter, i.e. the flow velocity or the surface immobilised receptor concentration, as the analyte plug is flowed through the channel. The third approach is based on non-rectangular devices where the analyte plug is replenished by a narrowing of the flow channel. This third design strategy is applied to the redesign of a biosensor for the detection of low cytokine levels from small sample volumes.In the second part a novel microfluidic system for the generation of concentration gradients across microfluidic channels is developed. In this design the analytes are transported by surface groove induced secondary flow from the source to the sink stream. Numerical optimisations over the shape and size of the surface groove result in gradient generators which yield a well-defined linear or exponential concentration gradient across the width of the microfluidic channel. The resulting gradient generators have a much smaller footprint than conventional gradient generators and are thus more suitable for highly integrated lab-on-a-chip systems.
机译:集成微流体系统的小尺寸为生物分析应用提供了许多优势,例如成本,速度和便携性。然而,由于规模小,仔细考虑在集成微流体系统的大部分中分析物的运输以及分析物与表面固定的分析物识别分子(受体)的相互作用对于有效的设备操作至关重要。本文涉及对集成微流亲和力系统中分析物的对流和扩散传输以及分析物-受体相互作用的数学分析和优化,目的是为更高效的生物分析系统创建设计指南。每个分析物分子都能到达表面固定受体的构型。在这种情况下,这对于传感和分离应用很重要,因此可以通过解析方式解决运输反应模型。针对两种生物分析应用分析了该分析解决方案:(i)亲和分离和(ii)亲和感测。对于快速的分析物-受体相互作用(这是亲和分离系统必不可少的),分析溶液的分析揭示了由于与受体的相互作用而导致分析物保留和分散的简单表达式。利用仅依赖于全局设备参数的这些表达式,开发了用于设计从复杂样品混合物中分离蛋白质的多重分离系统的框架。随后,运输反应模型的分析解决方案被用于微流体亲和力传感器的改进设计策略的推导中,以用于从小样本塞子中检测分析物。提出了三种设计策略,可实现高捕获率并显着提高传感器表面结合分析物浓度的均匀性。当分析物塞流过通道时,前两种策略依赖于一个装置参数的变化,即流速或表面固定的受体浓度。第三种方法基于非矩形设备,其中通过缩小流动通道来补充分析物塞子。第三种设计策略被应用于重新设计用于从少量样品中检测低细胞因子水平的生物传感器。在第二部分中,开发了一种新型的微流体系统,用于产生跨微流体通道的浓度梯度。在这种设计中,分析物通过表面沟槽诱导的二次流从源流到汇流。对表面凹槽的形状和大小的数值优化导致了梯度发生器,该发生器在整个微流体通道的宽度上产生了明确定义的线性或指数浓度梯度。所得的梯度发生器比传统的梯度发生器具有更小的占地面积,因此更适合于高度集成的芯片实验室系统。

著录项

  • 作者

    Friedrich Daniel;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号