首页> 外文OA文献 >Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity
【2h】

Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity

机译:不同太阳风驱动器的地磁响应统计分析及对风暴强度的依赖性

摘要

Geomagnetic storms start with activity on the Sun that causes propagation of magnetized plasma structures in the solar wind. The type of solar activity is used to classify the plasma structures as being either interplanetary coronal mass ejection (ICME) or corotating interaction region (CIR) driven. The ICME‐driven events are further classified as either magnetic cloud (MC) driven or sheath (SH) driven by the geoeffective structure responsible for the peak of the storm. The geoeffective solar wind flow then interacts with the magnetosphere producing a disturbance in near‐Earth space. It is commonly believed that a SH‐driven event behaves more like a CIR‐driven event than a MC‐driven event; however, in our analysis this is not the case. In this study, geomagnetic storms are investigated statistically with respect to the solar wind driver and the intensity of the events. We use the Hot Electron and Ion Drift Integrator (HEIDI) model to simulate the inner magnetospheric hot ion population during all of the storms classified as intense (Dstmin ≤ −100 nT) within solar cycle 23 (1996–2005). HEIDI is configured four different ways using either the Volland‐Stern or self‐consistent electric field and either event‐based Los Alamos National Laboratory (LANL) magnetospheric plasma analyzer (MPA) data or a reanalyzed lower resolution version of the data that provides spatial resolution. Presenting the simulation results, geomagnetic data, and solar wind data along a normalized epoch timeline shows the average behavior throughout a typical storm of each classification. The error along the epoch timeline for each HEIDI configuration is used to rate the model's performance. We also subgrouped the storms based on the magnitude of the minimum Dst. We found that typically the LANL MPA data provide the best outer boundary condition. Additionally, the self‐consistent electric field better reproduces SH‐ and MC‐driven events throughout most of the storm timeline, but the Volland‐Stern electric field better reproduces CIR‐driven events. Contrary to what we expect, examination of the HEIDI model results and solar wind data shows that SH‐driven events behave more like MC‐driven events than CIR‐driven storms.Key PointsFour ring current model results are statistically compared to geomagnetic indicesResults are examined as a function of solar wind driver and storm intensityStorm time geomagnetic response is different between ICMEs and CIRs
机译:地磁风暴始于太阳的活动,这导致磁化的等离子体结构在太阳风中传播。太阳活动的类型用于将等离子体结构分类为行星际冠状物质喷射(ICME)或同向相互作用区域(CIR)驱动。由ICME驱动的事件进一步归类为由负责风暴峰的地球有效结构驱动的磁云(MC)驱动或鞘层(SH)驱动。然后,地球有效的太阳风与磁层相互作用,在近地空间产生干扰。通常认为,SH驱动的事件比MC驱动的事件更像CIR驱动的事件。但是,在我们的分析中并非如此。在这项研究中,就太阳风驱动器和事件强度进行了统计研究。我们使用热电子和离子漂移积分器(HEIDI)模型来模拟在太阳周期23(1996-2005)内被归类为强烈(Dstmin≤-100 nT)的所有风暴期间的内部磁层热离子种群。使用Volland-Stern或自洽电场以及基于事件的洛斯阿拉莫斯国家实验室(LANL)磁层等离子体分析仪(MPA)数据或经过重新分析的提供空间分辨率的较低分辨率版本的数据,以四种不同方式配置HEIDI 。沿着归一化的纪元时间轴显示模拟结果,地磁数据和太阳风数据显示了每个分类的典型风暴期间的平均行为。每个HEIDI配置沿纪元时间线的误差用于评估模型的性能。我们还根据最小Dst的大小将风暴分组。我们发现,LANL MPA数据通常提供最佳的外边界条件。此外,自洽电场在大部分风暴时间轴上都能更好地重现SH和MC驱动的事件,而Volland-Stern电场能更好地重现CIR驱动的事件。与我们的预期相反,对HEIDI模型结果和太阳风数据的检查表明,与CIR驱动的风暴相比,SH驱动的事件的行为更像是MC驱动的事件。要点将四环流模型的结果与地磁指数进行统计比较太阳风驱动器和风暴强度的函数风暴时间地磁响应在ICME和CIR之间是不同的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号