首页> 外文OA文献 >Mesostructured metal oxide-based nanocomposites asudsorbents for H2S removal from syngas coal gasification
【2h】

Mesostructured metal oxide-based nanocomposites asudsorbents for H2S removal from syngas coal gasification

机译:介孔结构金属氧化物基纳米复合材料从合成气煤气化中去除H2s的吸附剂

摘要

Desulphurization of gas phase sulphur compounds has been receiving dramatic attention sinceudhazardous, corrosive, and toxic gases that cause environmental damages (especially acid rain) andudindustrial challenges (i.e., corrosion of equipment and deactivation of catalysts).udThis dissertation presents results of R&D efforts to develop efficient MeOx/SBA-15-based sorbentsudfor H2S removal in view of possible applications in hydrogen purification, air pollution control, and deepuddesulphurization of fossil fuels. It is precisely in the latter topic that the research project was born. Theudproduction of power, fuels and chemicals in most countries is predominantly based on oil and, to a minorudextent, on natural gas. It is well-known that the reserves of both of these fuels are limited to a range ofud40, 60 years. On the contrary, coal is a widely available fossil fuel, and it is expected to last for aboutud230 years. The imminent oil production limitations and the longer availability of coal, the wish to improveudthe security of the energy supply, and the possibility to reduce greenhouse gas emissions by means ofudcarbon capture and sequestration (CCS) are sufficient motivations to increase the use of this resource.udIntegrated Gasification Combined Cycle (IGCC) process is a high efficiency power generation technologyudwhich gasifies coal to generate the fuel (syngas) for a high efficiency gas turbine. A key challenge forudproducing clean power or hydrogen via gasification is cost effective purification of the sour syngas.udThere are many commercial treatment techniques that are used to remove H2S, but their disadvantage isudthat hot coal gas must be cooled down near to ambient temperature for desulphurization. The coolingudequipment required, and the need to reheat the clean syngas before its use in a gas turbine result inudeconomic and thermodynamic penalties that decrease the efficiency of a gasification plant. It is for thisudreason that hot gas desulphurization technique has attracted more and more attention due to the factudthat it can reduce H2S down to 100 ppm level and avoid heat loss. Mid-temperature desulphurization isudachieved by the use of solid sorbents such as oxides of those metals that form stable sulphides, based onudthe non-catalytic reaction between a metal oxide and hydrogen sulphide. The optimum desulphurizationudtemperature has been recommended in the range of 300 to 450 °C, also in according to the moreudfavourable thermodynamic equilibrium of sulphur compounds removal. To accomplish this task, Zincudoxide- and Iron oxide-based materials have been successfully employed for decades in different domainsudof the chemical industry. The pure metal oxides used as sorbents, however, suffer from evaporation, lossudin the surface area and porosity due to sintering and mechanical disintegration that affect theirudperformance and life time adversely. With the purpose of overcoming this problem and to improve theirudperformance, metal oxides can be confined into a support, where under such conditions the materialsudare stable. The main properties required for support materials are inertness, high surface area, largeudpores and good mechanical strength.udThe thesis reports some simple and versatile routes which can be proposed to prepare a greatudvariety of MeOx/SBA-15 composites where the mesostructured SBA-15 silica, a high-surface area (up toud1000 m2/g) material, with 6–7 nm-wide regular channels and thick (3–4 nm) pore walls has been used asudefficient and stable support. MeOx active phase, formed inside the mesochannels, can reach the maximumudsize of 6-7 nm physically imposed by the pore diameter. Such a structure provides an ideal reactorudwhere the mesopores act as channels for the transport of reactant. As a consequence, enhancement ofudthe active phase reactivity might be expected. The proposed “Two-solvents” incipient impregnationudmethod is easily reproducible and easy to scale up. Furthermore, this method should provide, at least inudprinciple, ideal systems to be compared, and therefore to understand how the active phase natureudinfluence their performance.udFor the first time, a careful comparative study on the effect of the different nature of theudnanostructured MeOx (Me = Zn, Fe) dispersed into a mesostructured silica matrix (SBA-15) on the H2Sudremoval performance is carried out.udThe behaviour of the MeOx/SBA-15 composites in the removal of H2S is investigated in a fixed-bedudreactor and compared with that of an unsupported ZnO commercial sorbent. The morphological,udstructural, and textural features of fresh, sulphided, and regenerated sorbents have been assessed by audmulti-technique approach, including the study of the possible interactions between the guest oxide andudthe host silica support. Furthermore, the sorption-desorption behaviour, which is commonly justified onlyudon the basis of the different nature of the active phase and of the textural features (surface area andudpore volume), is discussed also considering the morphology and the crystallinity of the active phase.udIn the literature, to our best knowledge, no one have reported similar correlations. For this reasonudthis work can give an important contribution to improve the basic knowledge in the field of sorbents forudgas-removal.
机译:气相硫化合物的脱硫受到了极大的关注,因为它会导致环境破坏(特别是酸雨)和工业挑战(例如,设备腐蚀和催化剂失活)。这种有害的,腐蚀性的和有毒的气体。研发工作,以开发有效的基于MeOx / SBA-15的H2S脱除吸附剂 ud,考虑到可能在氢纯化,空气污染控制和化石燃料的深 uds脱硫中的应用。正是在后一个主题中,研究项目诞生了。在大多数国家,电力,燃料和化学制品的生产主要基于石油,而次要天然气则基于天然气。众所周知,这两种燃料的储量都限制在60年之久。相反,煤炭是一种广泛使用的化石燃料,预计可持续使用约230年。迫在眉睫的石油生产限制和更长的煤炭供应时间,希望改善能源供应的安全性以及通过碳捕获和封存(CCS)减少温室气体排放的可能性是增加使用量的充分动机。 ud整体气化联合循环(IGCC)工艺是一种高效的发电技术 ud,它可以将煤气化以生成用于高效燃气轮机的燃料(合成气)。通过气化生产清洁能源或氢气的关键挑战是酸合成气的成本有效净化。有许多商业处理技术可用于去除H2S,但其缺点是必须将热煤气冷却至接近用于脱硫的环境温度。所需的冷却/设备以及将清洁的合成气用于燃气轮机之前需要对其进行重新加热会导致经济和热力学方面的损失,从而降低气化厂的效率。正是由于这种原因,热气脱硫技术可以将H2S降至100 ppm的水平并避免热量损失,因此引起了越来越多的关注。基于金属氧化物和硫化氢之间的非催化反应,通过使用固体吸附剂(例如形成稳定的硫化物的那些金属的氧化物)可以实现中温脱硫。最佳脱硫/高温建议在300至450°C的范围内,也要根据更有利的脱硫化合物热力学平衡来进行。为了完成此任务,基于氧化锌和氧化铁的材料已成功应用于化工行业的不同领域数十年。然而,用作纯金属氧化物的吸附剂由于烧结和机械崩解而蒸发,表面积损失和孔隙率降低,从而不利地影响其性能和使用寿命。为了克服该问题并改善其性能,可以将金属氧化物限制在载体中,在这种情况下材料是稳定的。支撑材料所需的主要特性是惰性,高表面积,大孔/多孔和良好的机械强度。 ud本文报道了一些简单而通用的方法,可以提出这些方法来制备多种MeOx / SBA-15复合材料,其中介孔结构SBA-15二氧化硅是一种高表面积(高达ud1000 m2 / g)的材料,具有6–7 nm宽的规则通道和厚(3–4 nm)的孔壁,已被用作 udeff且稳定的载体。在介孔内部形成的MeOx活性相可以达到6-7 nm的最大尺寸。这样的结构提供了理想的反应器,其中中孔充当了反应物的运输通道。结果,可以期望增强活性相反应性。拟议的“两种溶剂”初始浸渍 udmethod易于重现,并且易于扩展。此外,该方法至少应在原理上提供理想的系统进行比较,从而了解活性相的性质对它们的性能的影响。 ud首次对不同性质的影响进行了仔细的比较研究。对分散在介孔结构的二氧化硅基质(SBA-15)中的 udnano结构的MeOx(Me = Zn,Fe)进行了 ud去除性能。 udMeOx / SBA-15复合材料在去除H2S方面的行为是在固定床过反应器中进行了研究,并与未负载的ZnO商业吸附剂进行了比较。新鲜,硫化和再生吸附剂的形态,结构和结构特征已通过多种技术方法进行了评估,包括研究客体氧化物与基质二氧化硅载体之间可能的相互作用。此外,吸附-解吸行为通常仅根据活性相的不同性质和结构特征(表面积和孔体积)来进行论证,并考虑了活性相的形态和结晶度。 ud在文献中据我们所知,没有人报告过类似的相关性。由于这个原因,这项工作可以为提高去除 udgas的吸附剂领域的基础知识做出重要贡献。

著录项

  • 作者

    Mureddu Mauro;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号