首页> 外文OA文献 >Increasing recombinant protein production in Escherichia coli K12 by increasing the biomass yield of the host cell
【2h】

Increasing recombinant protein production in Escherichia coli K12 by increasing the biomass yield of the host cell

机译:通过增加宿主细胞的生物量产量来增加大肠杆菌K12中的重组蛋白质产量

摘要

For more than three decades micro-organisms have been employed as hosts for recombinant protein production, with the most popular organisms being Escherichia coli and Saccharomyces cerevisiae (1). One of the crucial factors to obtain high product yields in recombinant protein bioprocesses is the biomass yield of the host cell. High biomass yields not only result in less carbon loss and higher conversion to recombinant protein due to a potential higher drain of precursors, but are also accompanied by lower conversion to growth inhibiting byproducts, such as acetate (2). Furthermore, acidic byproducts hinder the expression of heterologous proteins (3) and consequently decrease protein yield in a direct and indirect manner. Many strategies have been tested to decrease the amount of acetate produced, including optimal feeding, choice of other carbon sources and metabolic engineering (4). Fed-batch and continuous feeding strategies result in low residual glucose concentrations and minimize overflow metabolism (’Crabtree effect’) (5; 6). Aristidou and coworkers improved biomass yield and protein production by using fructose as a primary carbon source without greatly affecting the fermentation cost (7). A third strategy is to alter the genetic machinery. Knocking out genes that code for acetate producing pathways, i.e. acetate kinase-phosphate acetyltransferase (ackA-pta) and pyruvate oxidase (poxB ) decrease acetate yield dramatically, but at the expense of lactate and pyruvate (8). The objective of this study was to focus on the combined effect of a global and a local regulator to increase biomass yield and hence recombinant protein production using GFP as a biomarker. Deletion of arcA reduces the repression on expression of TCA cycle genes (9) while deletion of iclR removes the repression on the aceBAK operon and opens the glyoxylate pathway (10; 11) in aerobic batch cultivations. This metabolic engineering approach simultaneously decreased the acetate yield with 70% and increased the biomass yield of the host cell with 50%. Due to a lower carbon loss and a lower inhibition of protein production by acetate, the GFP production of the ∆arcA∆iclR double knockout strain increased with 100% as opposed to the wild type E. coli K12. Further deletion of genes lon and ompT encoding for non-specific proteases even further increases GFP-production (3 times the wild type value). The effect of a deletion of arcA and iclR was also evaluated in a E. coli BL21 genetic background. However in this industrial strain the deletion had no effect on protein production. References [1] Ferrer-Miralles N, Domingo-Esp ́ J, Corchero JL, V ́zquez E, Villaverde A: Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 2009, 8:17 [2] El-Mansi EM, Holms WH: Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 1989, 135(11):2875–2883. [3] Jensen EB, Carlsen S: Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts. Biotechnol Bioeng 1990, 36:1–11 [4] De Mey M, Maeseneire SD, Soetaert W, Vandamme E: Minimizing acetate formation in E. coli fermentations. J. Ind. Microbiol. Biotechnol. 2007, 34:689–700. [5] Babaeipour V, Shojaosadati SA, Khalilzadeh R, Maghsoudi N, Tabandeh F: A proposed feeding strategy for the overproduction of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 2008, 49(Pt 2):141–147. [6] San KY, Bennett GN, Aristidou AA, Chou CH: Strategies in high-level expression of recombinant protein in Escherichia coli. Ann N Y Acad Sci 1994, 721:257–267. [7] Aristidou AA, San KY, Bennett GN: Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Biotechnol Prog 1999, 15:140–145. [8] De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Horen EV, Soetaert WK, Vanrolleghem PA, Vandamme EJ: Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol Prog 2007. [9] Perrenoud A, Sauer U: Impact of global transcriptional regulation by ArcA, ArcB, Cra,Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli . J. Bacteriol. 2005, 187:3171–3179. [10] van de Walle M, Shiloach J: Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng 1998, 57:71–78. [11] Maharjan RP, Yu PL, Seeto S, Ferenci T: The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation. Res Microbiol 2005, 156(2):178–183.
机译:三十多年来,微生物一直被用作重组蛋白生产的宿主,最流行的生物是大肠杆菌和酿酒酵母(1)。在重组蛋白生物过程中获得高产量的关键因素之一是宿主细胞的生物量产量。高生物量产量不仅会减少碳损失,并由于潜在的前体耗费更多而导致向重组蛋白的转化率更高,而且还会导致向生长抑制副产物(如乙酸盐)的转化率降低(2)。此外,酸性副产物会阻碍异源蛋白质的表达(3),从而直接或间接降低蛋白质产量。已经测试了许多减少乙酸盐产生量的策略,包括最佳进料,其他碳源的选择和代谢工程(4)。分批喂食和连续喂食策略可降低残留葡萄糖浓度,并最大程度地减少溢流代谢(“ Crabtree效应”)(5; 6)。 Aristidou和他的同事通过使用果糖作为主要的碳源,提高了生物质的产量和蛋白质的生产,而又没有极大地影响发酵成本(7)。第三种策略是改变遗传机制。敲除编码乙酸盐产生途径的基因,即乙酸激酶激酶-磷酸乙酰基转移酶(ackA-pta)和丙酮酸氧化酶(poxB),可显着降低乙酸盐产量,但以乳酸和丙酮酸为代价(8)。这项研究的目的是集中于全球和地方监管机构的联合作用,以增加生物量的产量,从而增加使用GFP作为生物标记的重组蛋白的生产。在有氧分批培养中,arcA的缺失会降低对TCA循环基因表达的抑制作用(9),而iclR的缺失则会消除aceBAK操纵子的抑制作用,并打开乙醛酸途径(10; 11)。这种代谢工程方法同时降低了乙酸盐产率(70%)和增加宿主细胞的生物质产率(50%)。由于较低的碳损失和较低的乙酸盐对蛋白质产生的抑制作用,与​​野生型大肠杆菌K12相比,ΔarcAΔiclR双敲除菌株的GFP产量增加了100%。进一步缺失编码非特异性蛋白酶的基因lon和ompT的基因甚至进一步增加了GFP的产量(野生型值的3倍)。还在大肠杆菌BL21遗传背景中评估了arCA和iclR缺失的影响。然而,在该工业菌株中,缺失对蛋白质生产没有影响。参考文献[1] Ferrer-Miralles N,Domingo-EsṕJ,Corchero JL,V́zquez E,Villaverde A:用于重组药物的微生物工厂。 Microb Cell Fact 2009,8:17 [2] El-Mansi EM,Holms WH:在分批和连续培养的大肠杆菌生长过程中控制乙酸盐排泄的碳通量。微生物学杂志,1989,135(11):2875–2883。 [3] Jensen EB,Carlsen S:在大肠杆菌中生产重组人生长激素:不同前体的表达以及葡萄糖,乙酸盐和盐的生理作用。 Biotechnol Bioeng 1990,36:1-11 [4] De Mey M,Maeseneire SD,Soetaert W,Vandamme E:在大肠杆菌发酵中减少乙酸盐的形成。 J.工业微生物学。生物技术。 2007,34:689–700。 [5] Babaeipour V,Shojaosadati SA,Khalilzadeh R,Maghsoudi N,Tabandeh F:大肠杆菌中重组蛋白过量生产的拟议喂养策略。 Biotechnol Appl Biochem 2008,49(Pt 2):141-147。 [6] San KY,Bennett GN,Aristidou AA,Chou CH:重组蛋白在大肠杆菌中高水平表达的策略。 Ann N Y Acad Sci,1994,721:257-267。 [7] Aristidou AA,San KY,Bennett GN:利用果糖作为主要碳源,可提高大肠杆菌的生物量产量和重组基因表达。生物技术进展1999,15:140-145。 [8] De Mey M,Lequeux GJ,Beauprez JJ,Maertens J,Horen EV,Soetaert WK,Vanrolleghem PA,Vandamme EJ:减少大肠杆菌中乙酸盐形成的不同策略的比较。生物技术进展,2007年。[9] Perrenoud A,Sauer U:ArcA,ArcB,Cra,Crp,Cya,Fnr和Mlc的全球转录调控对大肠杆菌中葡萄糖代谢的影响。 J.细菌。 2005,187:3171-3179。 [10] van de Walle M,Shiloach J:在高密度发酵过程中,两种重组大肠杆菌菌株中乙酸积累的拟议机制。 Biotechnol Bioeng 1998,57:71-78。 [11] Maharjan RP,Yu PL,Seeto S,Ferenci T:异柠檬酸裂解酶和乙醛酸循环在葡萄糖限制下生长的大肠杆菌中的作用。 Res Microbiol 2005,156(2):178-183。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号