首页> 外文OA文献 >Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell
【2h】

Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell

机译:用微生物燃料电池厂微改造的大米温室气体排放

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methane (CH4) release from wetlands is an important source of greenhouse gas emissions. Gas exchange occurs mainly through the aerenchyma of plants, and production of greenhouse gases is heavily dependent on rhizosphere biogeochemical conditions (i.e. substrate availability and redox potential). It is hypothesized that by introducing a biocatalyzed anode electrode in the rhizosphere of wetland plants, a competition for carbon and electrons can be invoked between electrical current-generating bacteria and methanogenic Archaea. The anode electrode is part of a bioelectrochemical system (BES) capable of harvesting electrical current from microbial metabolism. In this work, the anode of a BES was introduced in the rhizosphere of rice plants (Oryza sativa), and the impact on methane emissions was monitored. Microbial current generation was able to outcompete methanogenic processes when the bulk matrix contained low concentrations of organic carbon, provided that the electrical circuit with the effective electroactive microorganisms was in place. When interrupting the electrical circuit or supplying an excess of organic carbon, methanogenic metabolism was able to outcompete current generating metabolism. The qPCR results showed hydrogenotrophic methanogens were the most abundant methanogenic group present, while mixotrophic or acetoclastic methanogens were hardly detected in the bulk rhizosphere or on the electrodes. Competition for electron donor and acceptor were likely the main drivers to lower methane emissions. Overall, electrical current generation with BESs is an interesting option to control CH4 emissions from wetlands but needs to be applied in combination with other mitigation strategies to be successful and feasible in practice.
机译:从湿地释放的甲烷(CH4)是温室气体排放的重要来源。气体交换主要通过植物的气孔发生,而温室气体的产生在很大程度上取决于根际生物地球化学条件(即底物的可利用性和氧化还原电势)。假设通过在湿地植物的根际引入生物催化的阳极电极,可以在产生电流的细菌和产甲烷的古生菌之间引发对碳和电子的竞争。阳极电极是能够从微生物代谢中收集电流的生物电化学系统(BES)的一部分。在这项工作中,将BES的阳极引入水稻植物的根际,并监测其对甲烷排放的影响。当散装基质中含有低浓度的有机碳时,只要具有有效电活性微生物的电路就位,微生物电流的产生就可以胜过产甲烷过程。当中断电路或提供过量的有机碳时,产甲烷代谢能够胜过电流产生的代谢。 qPCR结果显示,氢营养型产甲烷菌是目前存在的最丰富的产甲烷菌,而在大块根际或电极上几乎没有检测到营养型或产甲烷菌的产甲烷菌。电子供体和受体的竞争可能是降低甲烷排放的主要驱动力。总体而言,利用BES产生电流是控制湿地CH4排放的有趣方法,但需要与其他缓解策略结合使用,以在实践中取得成功和可行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号