首页> 外文OA文献 >A smart climatology of evaporation duct height and surface radar propagation in the Indian Ocean
【2h】

A smart climatology of evaporation duct height and surface radar propagation in the Indian Ocean

机译:印度洋蒸发管高度和地面雷达传播的智能气候

摘要

Surface electromagnetic propagation over the ocean is highly sensitive to near-surface atmospheric variability, particularly the height of the evaporation duct. Seasonal variation in near-surface meterological factors and sea surface temperatures impact the evaporation duct height (EDH). Present U.S. Navy EDH climatology is based on sparse ship observations over a relatively short time period and an outdated evaporation duct (ED) model. This EDH climatology does not utilize smart, or modern, climatology datasets or methods and provides only long term mean (LTM) values of EDH. We have used existing, civilian, dynamically balanced reanalysis data, for 1970 to 2006, and a state-of-the-art ED model, to produce a spatially and temporally refined EDH climatology for the Indian Ocean (IO) and nearby seas. Comparisons of the present U.S. Navy EDH climatology with our climatology show a number of differences. These differences, and the differences in the methods used to generate the two climatologies, indicate that the EDH climatology we have generated provides a more accurate depiction of EDH. The EDH climatology we have produced provides LTM EDH values. But the data and methods we used to create this climatology also allowed us to examine the impacts of climate variations on EDH. Climate variations can have major impacts on the upper ocean and overlying lower troposphere. These impacts can lead to major fluctuations in the factors that determine EDH, and can thereby alter the propagation of EM signals through the atmosphere. The IO and nearby seas are strongly affected by a number of climate variations (e.g., El NinÌ o-La NinÌ a (ENLN), Indian Ocean Zonal Mode (IOZM)). These climate variations are known to lead to large anomalies in sea surface temperature, air temperature, winds, humidity, and other variables in the IO; however, the associated impacts on EDH and EM propagation have not been identified. To assess these impacts, reanalysis data composited by season and climate variation were processed using: (1) the NPS ED model to assess the impacts of the climate variations on EDH; and (2) the Advanced Refraction Effects Prediction System (AREPS) to assess the impacts of the variations on radar propagation. Our results show significant variations in EDH and AREPS ranges associated with the climate variations that affect the IO and nearby regions. These climate variations are predictable on weekly and longer time scales. In addition, for several seasons, EDH is significantly correlated with the climate variation when EDH lags by zero, one, and two months. Thus, there appears to be potential for climate scale forecasting of EDH and radar propagation at weekly to monthly lead times. For areas of operational interest, we conducted correlation analyses of EDH with its associated factors to further our understanding of the processes that cause spatial and temporal variations of EDH. These correlation results provide insights into the spatial and temporal sensitivity of EDH to the factors. Thus, they provide guidance on how to focus research, development, and operational efforts aimed at improving analyses and forecasts of EDH. We used the EDH climatology created in this study to generate climatological sensor performance surfaces for radar propagation. These surfaces are maps of climatological surface radar propagation over the IO and nearby seas under different climatological conditions (e.g., different months, locations, climate variations, and regimes). The performance surfaces are prototypes of operational climatological products, and examples of the improved climatological products that can be developed using smart climatology data and methods. These results indicate that climatological support for military planners could be substantially improved by using a smart climatology approach (i.e., applying state-of-the-art climate datasets, analysis, and forecasting methods).
机译:海洋表面电磁波的传播对近地表大气的变化特别是蒸发导管的高度高度敏感。近地表气象因素和海面温度的季节性变化影响蒸发管高度(EDH)。当前的美国海军EDH气候学是基于相对较短的时间内对舰船的稀疏观测以及过时的蒸发管(ED)模型。这种EDH气候学没有利用智能的或现代的气候学数据集或方法,而仅提供EDH的长期平均值(LTM)值。我们使用了1970年至2006年的现有民用动态平衡再分析数据,以及最新的ED模型,为印度洋(IO)和附近海域提供了时空精细的EDH气候。当前美国海军EDH气候学与我们的气候学的比较显示出许多差异。这些差异以及用于生成两种气候的方法的差异表明,我们生成的EDH气候提供了对EDH的更准确描述。我们产生的EDH气候提供了LTM EDH值。但是,我们用来创建这种气候学的数据和方法也使我们能够研究气候变化对EDH的影响。气候变化可能对高空和对流层低层产生重大影响。这些影响可能导致决定EDH的因素发生重大波动,从而改变EM信号在大气中的传播。 IO和附近海域受到多种气候变化的强烈影响(例如,ElNinÌo-LaNinÌa(ENLN),印度洋分区模式(IOZM))。众所周知,这些气候变化会导致海表温度,气温,风,湿度和IO中的其他变量出现较大的异常。但是,尚未确定对EDH和EM传播的相关影响。为了评估这些影响,使用以下方法处理由季节和气候变化综合而成的再分析数据:(1)NPS ED模型以评估气候变化对EDH的影响; (2)先进折射效应预测系统(AREPS),用于评估变化对雷达传播的影响。我们的结果表明,EDH和AREPS范围的显着变化与影响IO和附近地区的气候变化有关。这些气候变化在每周和更长的时间尺度上都是可以预测的。此外,在几个季节中,当EDH滞后零,一和两个月时,EDH与气候变化显着相关。因此,似乎有可能在每周至每月的交付周期内对EDH和雷达传播的气候规模进行预测。对于运营感兴趣的领域,我们对EDH及其相关因素进行了相关分析,以进一步了解导致EDH时空变化的过程。这些相关结果为EDH对这些因素的时空敏感性提供了见解。因此,它们为如何集中研究,开发和运营工作提供了指导,以改进EDH的分析和预测。我们使用在这项研究中创建的EDH气候来生成用于雷达传播的气候传感器性能表面。这些表面是在不同气候条件下(例如不同月份,位置,气候变化和状况)在IO和附近海洋上传播的气候表面雷达的地图。性能表面是可操作气候产品的原型,以及可使用智能气候数据和方法开发的改进气候产品的示例。这些结果表明,通过使用智能气候学方法(即应用最新的气候数据集,分析和预测方法),可以大大改善对军事计划人员的气候支持。

著录项

  • 作者

    Twigg Katherine L.;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号