首页> 外文OA文献 >Identifying genetic susceptibilities underlyingudfamilial haematological malignancies in audTasmanian family resource
【2h】

Identifying genetic susceptibilities underlyingudfamilial haematological malignancies in audTasmanian family resource

机译:识别潜在的遗传敏感性家族性血液系统恶性肿瘤塔斯马尼亚家庭资源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Haematological malignancies (cancers of the haematopoietic and lymphoid tissues)udare collectively one of the most frequently diagnosed cancers in Australia. Familyudhistory is one of the strongest risk factors for disease. Evidence for this derives fromudlarge population-based studies that have identified an increased risk of haematologicaludmalignancies in first degree relatives of cases, as well as studies of individual familiesudwhere analyses have identified genes where family specific germline mutationsudpredispose to these malignancies. Despite intensive research into the geneticudpredisposition to these cancers, the known genes account for only a small portion ofudthe overall inherited component of haematological malignancies, leaving a significantudgap in our understanding of the genetic basis of disease. Earlier studies used candidateudgene approaches or sparse sets of genome wide markers to identify predispositionudgenes. Such approaches have a limited capacity for disease gene identification. Now,udapplication of innovative technologies, such as next generation sequencing, to familialuddatasets with multiple cases of haematological malignancies presents an idealudopportunity to identify new predisposing germline mutations and other genetic factorsudcontributing to disease development.udThe aim of this study was to identify the genetic architecture of disease susceptibilityudin large families affected by multiple subtypes of haematological malignancies. Thisudstudy takes advantage of a collection of extended Tasmanian haematologicaludmalignancy pedigrees comprising 48 families, as well as 84 additional Tasmanianudhaematological malignancy cases with no known family history of disease. Thisudresource is particularly valuable due to the recognised stability and relative geneticudhomogeneity of the island population of Tasmania.udNext generation sequencing approaches were employed to identify novel, rare andudshared predisposing mutations in affected family members. This was achievedudthrough a combination of whole exome and whole genome sequencing in fiveudprioritised families. Genome and exome alignment and variant calling were conductedudusing BWA and SAMtools. High-quality single nucleotide and small insertion /uddeletion variants identified were then annotated with information from public dataudsources using ANNOVAR. Variants were filtered to focus in on rare variants (withudpopulation frequency estimates of 1% or less) using frequencies in Caucasianudpopulation data from the 1000 Genomes Project and the UK10K consortia dataset. Audlarge number of rare shared genetic mutations were identified between relatedudhaematological malignancy cases in these families. A tiered prioritisation strategy wasuddeveloped and employed to identify the top preferred candidates for further followup.udThis strategy incorporated variant-based prioritisation, using in silico predictionsudof variant effect, and gene-based prioritisation using known gene biology. For genebasedudprioritisation a literature curated network analysis tool (Ingenuity PathwayudAnalysis) and an ontology-based tool (Phevor) as well as publically available tissueudexpression profiles of the mutated genes were used. Genes prioritised for furtherudfollow-up include examples such as TNFSF9, TDP2, MMP8, and NOTCH1. Theseudgenes have not been previously implicated in the familial risk for haematologicaludmalignancies, although some have previously established roles in malignancy. Forudexample, TNFSF9 is a gene with clear connections to both T-cell and B-cell biologyudand there is evidence from a mouse knockout model that disruption to this gene canudcontribute to malignancy development.udA subsequent aim of this study was to explore the role of telomere biology in familialudhaematological malignancies. Telomere biology has a well-characterised role inudcancer development. Disruption of key telomere biology genes has been shown toudlead to a spectrum of syndromes of which haematological malignancies are a featureudsuch as dyskeratosis congentia and aplastic anaemia. To examine whether disruptedudtelomere biology was detectable in haematological malignancies, an analysis ofudtelomere length was conducted using a PCR-based assay measuring across theudfamilial resource, non-familial cases and population controls. Telomere length wasudanalysed as a quantitative trait using variance components modelling, adjusting forudage, sex and importantly kinship. The key finding from this analysis was that telomereudlength was highly heritable at 62.5% (P=4.7×10-5) indicating a strong genetic effectuddriving variation in telomere length and that both familial and non-familialudhaematological malignancy cases had shorter telomeres (P=2.2×10-4 and 2.2×10-5udrespectively). These results indicate that telomere length contributes broadly toudhaematological malignancies. Genetic variation in some of the known telomereudbiology genes was examined, however the underlying genetic contribution to theudobserved shortened telomere length remains to be determined.udThis thesis describes the genetic analysis of a rare resource, providing evidence forudseveral novel genes with possible roles in the development of haematologicaludmalignancies. As expected next generation sequencing of these families has furtherudhighlighted the multigenic contribution to risk in this complex disease.
机译:血液恶性肿瘤(造血和淋巴组织癌)是澳大利亚最常被诊断的癌症之一。家庭历史记录是疾病的最强危险因素之一。证据来自超大型的基于人群的研究,这些研究已确定病例一级亲属的血液学/恶性肿瘤风险增加,以及对单个家庭的研究,其中分析已鉴定出特定于家庭的种系突变的基因对此不敏感。恶性肿瘤。尽管对这些癌症的遗传/遗传易感性进行了深入研究,但已知基因仅占血液恶性肿瘤整体遗传成分的一小部分,在我们对疾病遗传基础的理解上存在重大分歧。较早的研究使用候选物/预兆方法或稀疏的全基因组标记集来识别易感性/预兆。这种方法具有有限的疾病基因鉴定能力。现在,将创新技术(例如下一代测序)应用于具有多例血液系统恶性肿瘤的家族性 uddata数据集,是鉴定新的易感种系突变和其他遗传因素 ud促进疾病发展的理想机会。 ud该研究旨在确定受多种亚型血液恶性肿瘤影响的大家族的疾病易感性的遗传结构。该研究利用了由48个家庭组成的扩展的塔斯马尼亚血液学/恶性肿瘤谱系以及另外84例没有已知家族病史的塔斯马尼亚人/恶性血液病恶性案例。由于公认的塔斯马尼亚岛人口具有一定的稳定性和相对遗传/同质性,因此这种 udre资源特别有价值。 ud下一代测序方法被用来鉴定受影响家庭成员中新的,罕见的和 udshared易感突变。这是通过将五个外来家族的全外显子组和全基因组测序相结合来实现的。使用BWA和SAMtools进行基因组和外显子组比对和变异调用。然后,使用ANNOVAR,使用来自公共数据 udsources的信息对鉴定出的高质量单核苷酸和小插入/ uddeeletion变体进行注释。使用来自1000个基因组计划和UK10K联合体数据集的高加索人口密度数据中的频率,对变异体进行过滤,以专注于稀有变异体(人口密度估计数小于或等于1%)。在这些家庭的相关血液病学恶性病例之间发现了大量罕见的共有基因突变。 ud制定了分层的优先级排序策略,并使用它来确定首选的进一步候选者。 ud此策略结合了基于变量的优先级排序(使用计算机模拟 udof变量效果)和基于基因的优先级排序(使用已知的基因生物学)。对于基于基因的 udprioritisation,使用了文献策划的网络分析工具(Ingenuity Pathway udAnalysis)和基于本体的工具(Phevor)以及突变基因的公开可用的组织去表达谱。优先进行进一步追踪的基因包括例如TNFSF9,TDP2,MMP8和NOTCH1等。这些预算以前没有涉及到血液学/恶性肿瘤的家族风险,尽管有些已经在恶性肿瘤中确立了作用。例如,TNFSF9是与T细胞和B细胞生物学都有明确联系的基因 ud,并且从小鼠基因敲除模型中有证据表明对该基因的破坏可以 ud有助于恶性肿瘤的发展。 ud本研究的后续目标目的是探讨端粒生物学在家族性皮肤病学恶性肿瘤中的作用。端粒生物学在癌症的发展中具有十分重要的作用。关键端粒生物学基因的破坏已显示出导致一系列以血液系统恶性肿瘤为特征的综合症,例如角化不全症和再生障碍性贫血。为了检查在血液恶性肿瘤中是否可检测到 udomeromere生物学异常,使用基于PCR的检测方法对 udtelomere长度进行了分析,该检测方法可用于 udfamiled资源,非家族病例和人群对照。使用方差成分建模对端粒长度进行 u分析,将端粒长度 u分析为定量特征,性别和重要的血缘关系。这项分析的主要发现是端粒过长的遗传率高达62.5%(P = 4.7×10-5),表明端粒长度具有很强的遗传效应驱动变异,家族性和非家族性/血液病性恶性肿瘤均具有端粒较短(分别为P = 2.2×10-4和2.2×10-5 )。这些结果表明端粒长度广泛地影响恶性血液病。研究了一些已知的端粒 udbiology基因的遗传变异,但是对假观察的端粒长度缩短的潜在遗传贡献仍有待确定。 ud本论文描述了一种稀有资源的遗传分析,为许多新基因提供了证据在血液学/恶性肿瘤的发展中可能发挥作用。如预期的那样,这些家族的下一代测序进一步突出显示了多基因对这种复杂疾病风险的贡献。

著录项

  • 作者

    Blackburn NB;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号