首页> 外文OA文献 >The Martabe Au-Ag high-sulfidation epithermal deposits, Sumatra, Indonesia: implications for ore genesis and exploration
【2h】

The Martabe Au-Ag high-sulfidation epithermal deposits, Sumatra, Indonesia: implications for ore genesis and exploration

机译:印度尼西亚苏门答腊的Martabe Au-Ag高硫化超热矿床:对成矿和勘探的意义

摘要

The Martabe gold district, situated on the north-west coast of Sumatra, Indonesia, consists of four high-sulfidation epithermal gold-silver deposits over an 8 km strike length: Purnama, Baskara, Kejora and Gerhana and one low-sulfidation epithermal gold-silver deposit, Pelangi. Resources have been estimated for the three principal known deposits, Purnama, Baskara and Pelangi. Resources (inferred, indicated and measured) are 91.2 Mt @ 1.5 ppm Au and 19 ppm Ag for Purnama, 36.6 Mt @ 1.0 ppm Au and 4 ppm Ag for Baskara, and 10.4 Mt @ 1.1 ppm Au for Pelangi. Reserves (proved and probable) are based on an optimized open-pit mine design which extends approximately 900 m north-south along strike; total Purnama reserves are identifying 35.7 Mt @ 1.9 ppm gold and 26 ppm Ag.udMartabe is located in the western Sunda Banda magmatic arc within and adjacent to a Late Tertiary porphyritic dacite and andesite dome and diatreme complex that was emplaced into a volcano-sedimentary sequence comprising interlayered sandstone, siltstone, carbonaceous mudstone and andesite lava flows. Martabe is located near a series of fault splays of the Sumatra Fault System and this structural framework has played an important role in the formation of the deposits.udAt Martabe there are a wide variety of distinctive breccias within the dome and diatreme complex. The origins and processes of these breccias are varied and include phreatomagmatic, phreatic, tectonic and hydraulic brecciation. Recognition of stratified and unstratified breccias, base surge deposits and overlying airfall tuffs indicate that the initial setting was a maar volcanic field, containing multiple diatreme vents.udIntrusion of felsic magma into a fault-bounded block of brecciated carbonaceous mudstone (part of Sumatran Fault System) within an active hydrothermal system resulted in phreatomagmatic brecciation at Martabe. The presence of juvenile magmatic clasts with delicate wispy texture and cuspate margins, in situ rhyolite clasts associated with dacitic-andesitic dykes and base surge (stratified breccia) deposits are the key pieces of evidence for a phreatomagmatic origin.udThe flow dome complex formed at ca. 3.8± 0.5 Ma (quartz-phyric dacite, U-Pb method) and 3.1±0.4 to 2.8± 0.3 Ma (hornblende-phyric andesite, U-Pb method), and extensive alteration closely followed emplacement of the domes at 3.30± 0.11 to 2.14± 0.10 Ma (alunite, K-Ar method). These periods of hydrothermal activity indicate the magmatic/hydrothermal system was active from 3.8 to 2.1 Ma and the main-stage alteration occurred within 0.5–0.8 Ma of dome emplacement. All identified economic and sub-economic gold-silver mineralization of the district displays a zonal pattern of alteration typical of high-sulfidation epithermal systems, with the presence a low-sulfidation epithermal system at the periphery (i.e., Pelangi). In general, the alteration at Martabe consists of siliceous (quartz dominant), advanced argillic (alunitic and kaolinitic), argillic and propylitic alteration. The ‘alunitic’ alteration assemblage consists of quartz+alunite±dickite/kaolinite±pyrite; the ‘kaolinitic’ assemblage refers to quartz+kaolinite/dickite±alunite±pyrite; the argillic assemblage contains illite-smectite-pyrite+quartz; and the propylitic assemblage consists of chlorite+epidote+calcite ±illite/sericite±pyrite±quartz. Alteration is typically zoned from a core of brecciated, massive and vuggy quartz (siliceous alteration) that grades outwards through advanced argillic alteration (alunitic and kaolinitic) to argillic alteration that is surrounded by a peripheral zone of pervasive propylitic alteration. Economic mineralization is hosted within the siliceous and advanced argillic alteration zones. The alteration zones most likely occurred as multiple stages and formed contemporaneously with the Martabe dome magmatism.udThe majority of epithermal Au-Ag mineralization in the district is characterized as high-sulfidation, based on the sulfide and sulfosalt mineral assemblage and advanced argillic alteration. Ore mineralization consists of enargite-luzonite+tetrahedrite-tennantite-pyrite in veins, vugs and as breccia matrix. Jarosite, hematite and goethite are the most common products of oxidation. Gold is present as micron-sized native gold grains associated with quartz, Fe-oxides, enargite-luzonite, tetrahedrite-tennantite and covellite-digenite.udPurnama consists of disseminated Au-Ag mineralization distributed sub-horizontally within and adjacent to the western perimeter of the diatreme with both strong lithological and structural control. A quartz matrix-supported breccia contains the majority of high-grade ore, although lower grade mineralized zones occur within pervasive advanced argillic-alunitic altered breccias and advanced argillic-kaolinitic altered andesite. At Baskara and Kejora, mineralization is sub-vertical and spatially associated with phreatic and phreatomagmatic breccia bodies emplaced along NE-striking faults. The best gold mineralization occurs at the contact between breccia bodies and the dacite-andesite dome. At Pelangi, gold- and silver-bearing, low-sulfidation, quartz veins and stockworks cross-cut the advanced argillic alteration. At Gerhana, the mineralization are with both lithology and structural controls and are likely similar to Purnama.udResults of a LA-ICP-MS study of trace-element mineral chemistry in pyrite and enargite indicate significant variability in trace-element compositions, particularly in Fe, Te, Bi, Sn, Se, Au, Pb, Mo, W and Ba. Three generations of pyrite are recognized. An early stage of well-crystallized pyrite (stage-1) is enclosed by fine (submicron) overgrowths of second stage of poorly crystalline pyrite (stage-2). The stage-1 cores have relatively low trace element concentrations. Conversely, the stage-2 pyrites contain an abundant variety of trace elements with high concentrations. Stage-3 pyrite occurs as filling vugs or fractures and encompasses stage-1 and stage-2 pyrite. Stage-3 pyrite has a similar range of trace elements as stage 2 but at lower concentrations. In general, the most abundant trace elements in enargite are those that also form discrete sulfosalt, selenide and telluride accessory phases. Enargite in the Purnama and Gerhana deposits is enriched in Au, Se and Te.udThe sequence of events that formed the Martabe diatreme/dome complex and associated alteration and mineralisation is interpreted to be:ud(i) Down faulting of pre-Miocene sedimentary units.ud(ii) Intrusion of felsic magma along existing structures. Interaction of meteoric water with magma initiated early hydrothermal convection (low-sulfidation fluid). Formation of argillic and propylitic alteration.ud(iii) Felsic intrusions continued to move up along the existing faults and triggered phreatomagmatic and phreatic eruptions (diatreme formation).ud(iv) Phreatomagmatic eruptions continued to excavate the conduit and widen the diatreme producing multiple crosscutting breccias.ud(v) High temperature, extremely acid (high-sulfidation) fluids from condensation of magmatic volatiles caused advanced argillic alteration. No precious-metal mineralization accompanied this alteration.ud(vi) The hydrothermal system returned to convection of meteoric water (low-sulfidation fluid). Formation of Au-Ag-bearing, quartz-chalcedony veins.ud(vii) Intrusion of dacite and hornblende andesite into the diatreme creating the dome complex. Triggering of phreatomagmatic and phreatic eruptions.ud(viii) Domes interacted with meteoric water causing hydrothermal convection of a low-sulfidation fluid with overpressure leading to hydrothermal brecciation.ud(ix) Introduction of magmatic, metal-rich, high-sulfidation fluid depositing Cu-Au mineralization (disseminated and fracture-controlled pyrite-enargite-luzonite-tennantite-tetrahedrite).ud(x) Late-stage phreatic brecciation.ud(xi) Oxidation, erosion and weathering. The Martabe Au-Ag deposits show a complex interplay of intrusive events, phreatomagmatic, phreatic, and hydrothermal brecciation and differing stages of hydrothermal (low- and high-sulfidation) fluid introduction. The superposition of both high- and low-sulfidation mineralizing events increases the precious metal content of the mineralization, and adds to the overall exploration potential of the district.
机译:Martabe金矿区位于印度尼西亚苏门答腊岛西北海岸,由四个长8公里长的高硫化超热金银矿床组成:Purnama,Baskara,Kejora和Gerhana,以及一个低硫化超热金矿。银矿,佩兰吉。估计了三个主要已知矿床Purnama,Baskara和Pelangi的资源。资源(推断,指示和测量)对于Purnama是91.2 Mt @ 1.5 ppm Au和19 ppm Ag,对于Baskara是36.6 Mt @ 1.0 ppm Au和4 ppm Ag,对于Pelangi是10.4 Mt @ 1.1 ppm Au。储量(已探明和可能的)基于优化的露天矿设计,其沿走向南北延伸约900 m; Purnama的总储量可确定35.7 Mt @ 1.9 ppm的黄金和26 ppm的银。 udMartabe位于Sunda Banda岩浆弧中,位于晚第三纪的斑岩性辉锰矿和安山岩穹顶和超硬复合体中,并与之形成火山沉积。层序由层状砂岩,粉砂岩,碳质泥岩和安山岩熔岩流组成。 Martabe位于苏门答腊断裂系统的一系列断层张开附近,这种结构框架在沉积物的形成中发挥了重要作用。 udMartabe在穹顶和超级复杂内部有多种独特的角砾岩。这些角砾岩的起源和过程是多种多样的,包括吞噬岩浆,吞噬,构造和水力成矿。识别出层状和非层状角砾岩,基波涌沉积物和上覆的空陷凝灰岩表明,初始环境是一个玛尔火山场,包含多个异常喷发孔。活跃的热液系统中的系统)在Martabe造成了岩浆岩性的角化。幼岩浆岩屑的质地细腻细腻,边缘尖锐,与流水岩岩浆岩与胶体-安山岩岩脉和基底涌动(层状角砾岩)沉积有关,是岩浆岩浆成因的关键证据。 ca. 3.8±0.5 Ma(石英-闪锌矿榴辉岩,U-Pb法)和3.1±0.4至2.8±0.3 Ma(角闪长石-安山岩,U-Pb法),并在穹顶以3.30±0.11至0.50的高度紧随其后发生了广泛的变化2.14±0.10 Ma(褐铁矿,K-Ar法)。这些热液活动时期表明岩浆/热液系统活跃在3.8至2.1 Ma之间,主阶段的变化发生在穹顶位置的0.5-0.8 Ma之内。该地区所有已识别的经济和次经济金银矿化都表现出高硫化超热系统典型的地带性变化模式,而外围地区(即佩兰吉)则存在低硫化超热系统。通常,Martabe的蚀变包括硅质(石英占优势),高级泥质(单元质和高岭土),泥质和丙基化蚀变。 “单元”蚀变组合由石英+铝矾土±闪锌矿/高岭土±黄铁矿组成。 “高岭土”组合是指石英+高岭石/迪克石±褐铁矿±黄铁矿;泥质组合包含伊利石-蒙脱石-黄铁矿+石英。乙炔组合由亚氯酸盐+静电石+方解石±伊利石/绢云母±黄铁矿±石英组成。蚀变的区域通常是角砾状,块状和蓬松的石英(硅质蚀变),该石英心通过高级的阿尔吉尔蚀变(亚单位和高岭土)向外逐渐变质为被普遍的乙腈蚀变的外围区域包围的泥质蚀变。经济矿化集中在硅质和晚期的泥质蚀变带内。蚀变带最可能发生在多个阶段,并与Martabe穹顶岩浆作用同时形成。矿石矿化由脉,孔和角砾岩基质中的辉镁石-绿铁矿+四面体-黄铁矿-黄铁矿组成。黄铁矿,赤铁矿和针铁矿是最常见的氧化产物。金以微米级天然金颗粒的形式存在,与石英,铁氧化物,钠辉石-褐铁矿,四面体-钙钛矿和钙锰矿-褐铁矿有关。兼具强大的岩性和结构控制能力。石英基质支持的角砾岩包含大多数高品位矿石,尽管较低等级的矿化带出现在普遍的高级阿耳基-亚铝酸盐蚀变角砾岩和高级阿耳基-高岭土蚀变安山岩中。在Baskara和Kejora,成矿作用与沿东北走向的断层所安置的潜水和岩浆角砾岩体在亚垂直的空间上相关。最佳的金矿化发生在角砾岩体与榴辉岩-安山岩穹顶之间的接触处。在佩兰吉,含金,含银,低硫化度的石英脉和储层横切了高级的阿尔吉尔蚀变。在Gerhana,矿化具有岩性和结构控制作用,并且可能与Purnama相似。 udLA-ICP-MS对黄铁矿和辉铝矿中微量元素矿物化学研究的结果表明,微量元素的组成存在显着变化,特别是在Fe,Te,Bi,Sn,Se,Au,Pb,Mo,W和Ba公认有三代黄铁矿。结晶度高的黄铁矿的早期阶段(阶段1)被结晶度较差的黄铁矿的第二阶段(阶段2)的细(亚微米)过度生长所包围。 1级核心的痕量元素浓度相对较低。相反,第二阶段的黄铁矿含有大量高浓度的痕量元素。第三阶段的黄铁矿以充填孔洞或裂缝的形式出现,包括第一阶段和第二阶段的黄铁矿。第三阶段黄铁矿的痕量元素范围与第二阶段相似,但浓度较低。通常,在辉石中最丰富的痕量元素是那些也能形成离散的亚硫酸盐,硒化物和碲化物辅助相的元素。 Purnama和Gerhana矿床中的辉镁岩富含Au,Se和Te。 ud形成Martabe diatreme / dome复合体以及相关的蚀变和矿化的事件序列被解释为: ud(i)中新世前期断层 ud(ii)沿现有结构侵入的长英质岩浆。流水与岩浆的相互作用引发了早期的热液对流(低硫化流体)。泥质和浆状蚀变的形成。 ud(iii)岩性侵入继续沿着现有断层向上移动,并触发了岩浆和浅水区喷发(极端形成)。 ud(iv)岩浆性喷发继续开挖了导管并扩大了变质产气 ud(v)由于岩浆挥发物的冷凝而产生的高温,极强酸(高硫化)流体会导致晚期的阿尔吉尔蚀变。 ud(vi)水热系统恢复到对流水(低硫化流体)的对流状态。 ud(vi)形成含金和银的石英玉髓的脉。 ud(vii)将达铁矿和角闪闪岩安山岩侵入到异常的地方,形成穹顶复合体。触发岩浆和岩浆喷发。 ud(viii)穹顶与陨石水相互作用,导致低硫化流体的水热对流,超压导致水热沸腾。 ud(ix)引入岩浆,富含金属的高硫化流体沉积的Cu-Au矿化(散布的和控制断裂的黄铁矿-磁铁矿-绿宝石-球铁矿-四面体)。 ud(x)晚期潜水角砾化。 ud(xi)氧化,侵蚀和风化。 Martabe Au-Ag矿床显示出侵入性事件,岩浆,潜水和热液喷出以及不同阶段的热液(低硫化和高硫化)流体引入之间的复杂相互作用。高硫和低硫矿化事件的叠加增加了矿化中的贵金属含量,并增加了该地区的整体勘探潜力。

著录项

  • 作者

    Sutopo B;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号