首页> 外文OA文献 >Electrocatalytic performance and stability of nanostructured Fe–Ni pyrite-type diphosphide catalyst supported on carbon paper
【2h】

Electrocatalytic performance and stability of nanostructured Fe–Ni pyrite-type diphosphide catalyst supported on carbon paper

机译:碳纸负载的纳米结构铁镍黄铁矿型二磷催化剂的电催化性能和稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A simple and effective method to prepare an active and stable nanostructured working electrode for electrochemical water splitting is described. Specifically, mixed Fe–Ni diphosphide was prepared by sputtering a 200-nm-thick layer of Permalloy onto carbon paper gas diffusion layer followed by gas transport phosphorization reaction. The mass density of the resultant diphosphide phase was established to be 1.1 mg/cm2. Energy-dispersive X-ray microanalysis shows that the actual elemental composition of the resultant ternary electrocatalyst is approximately Fe0.2Ni0.8P2, while the powder X-ray diffraction analysis confirms that the electrocatalyst crystallizes in NiP2 cubic pyrite-like structure. As a cathode for hydrogen evolution reaction (HER) in acidic and alkaline electrolytes, this earth-abundant electrode has exchange current densities of 6.84103 and 3.16103 mA/cm2 and Tafel slopes of 55.3 and 72.2 mV/dec, respectively. As an anode for oxygen evolution reaction (OER) in alkaline electrolyte, the electrode shows an exchange current density of 2.88104 mA/cm2 and Tafel slope of 49.3 mV/dec. The observed high activity of the electrode correlates well with its electronic structure, which was assessed by density functional theory (DFT) calculations. The stability of Fe0.2Ni0.8P2 electrocatalyst in HER and OER was evaluated by means of accelerated degradation test and chronopotentiometry. The results of these experiments elucidate partial dissolution and entire chemical transformation of Fe0.2Ni0.8P2 as the main mechanisms of the electrode degradation during HER and OER, respectively. Overall, our findings could facilitate the composition-based design of active, stable, and durable phosphide electrodes for electrochemical water splitting.
机译:描述了一种简单有效的方法来制备用于电化学水分解的活性和稳定的纳米结构工作电极。具体来说,通过将厚度为200 nm的坡莫合金溅射到碳纸气体扩散层上,然后进行气体传输磷化反应,来制备混合的Fe-Ni二磷化物。所得二磷化物相的质量密度确定为1.1mg / cm2。能量色散X射线微分析表明,所得三元电催化剂的实际元素组成约为Fe0.2Ni0.8P2,而粉末X射线衍射分析证实该电催化剂以NiP2立方黄铁矿状结构结晶。作为酸性和碱性电解质中氢发生反应(HER)的阴极,这种富含地球的电极的交换电流密度为6.84103和3.16103mA / cm2,Tafel斜率为55.3和72.2 mV / dec , 分别。作为碱性电解液中氧释放反应(OER)的阳极,该电极的交换电流密度为2.88×10×4 mA / cm2,Tafel斜率为49.3 mV / dec。观察到的电极的高活性与其电子结构密切相关,该电子结构通过密度泛函理论(DFT)计算进行了评估。通过加速降解试验和计时电位法评估了Fe0.2Ni0.8P2电催化剂在HER和OER中的稳定性。这些实验的结果阐明了Fe0.2Ni0.8P2的部分溶解和整个化学转化分别是HER和OER期间电极降解的主要机理。总的来说,我们的发现可以促进用于电化学水分解的活性,稳定和耐用的磷化物电极的基于成分的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号