首页> 外文OA文献 >Proton exchange membrane fuel cells: water permeation through Nafion(R) membranes
【2h】

Proton exchange membrane fuel cells: water permeation through Nafion(R) membranes

机译:质子交换膜燃料电池:透过Nafion(R)膜的水渗透

摘要

Water permeation through Nafion® membranes and catalyst-coated membranes are measured. Three types of water permeability measurements are conducted in order to systematically study the effect of the phase of water in contact with the membrane: vapour permeation (termed vapour-vapour permeation), pervaporation (termed liquid-vapour permeation) and hydraulic permeation (termed liquid-liquid permeation). Measurements are taken at 70oC. The largest water permeation flux was observed when the membrane was exposed to liquid water on one side and water vapour at the other, i.e., liquid-vapour permeation. Water permeabilities were found to increase: with increasing differential chemical potential developed across the membrane; with progressive hydration of the membrane; and when the membrane is in contact with liquid water. Water permeability measurements obtained ex-situ are correlated to in-situ fuel cell water balance measurements at 70oC. The back permeation (i.e., water transport from cathode to anode), is largely driven by liquid-vapour permeation, and is sufficient to offset the electro-osmotic drag flux (i.e., proton-driven water transport towards cathode). Ex-situ and in-situ water transport measurements were extended to membranes with thicknesses ranging 6 to 201 μm. Under liquid-liquid permeation condition, water permeation fluxes increased with reduction in membrane thickness; under liquid-vapour and vapour-vapour permeation conditions, water permeation fluxes increased with reduction in membrane thickness but changed little for thickness below 56 μm. Estimation of internal and interfacial water transport resistances revealed that interfacial water transport resistance is dominant for thin membranes – explaining why further increases in liquid-vapour and vapour-vapour permeation fluxes are not observed with decreasing membrane thicknesses below 56 μm. Water permeabilities of catalyst-coated membranes and pristine membranes are found to be similar under all three modes of water permeation. The effect of catalyst layer on membrane water permeation is negligible. In summary, the formation of a membrane/liquid interface is found to enhance the permeability of water through Nafion® membranes. In contrast, presence of a membrane/vapour interface diminishes the rate of water permeation. Under fuel cell operating conditions, when the membrane/liquid interface is formed at the cathode, it is found that a sufficient rate of back permeation effectively regulates the water balance within the fuel cell.
机译:测量通过Nafion®膜和涂有催化剂的膜的水渗透率。为了系统地研究水与膜接触的相的影响,进行了三种类型的水渗透率测量:蒸气渗透(称为蒸气-蒸气渗透),渗透(称为液体-蒸气渗透)和水力渗透(称为液体) -液体渗透)。在70oC下进行测量。当膜的一侧暴露于液态水而另一侧暴露于水蒸气时,即水蒸气渗透,观察到最大的水渗透通量。发现水的渗透性增加:随着膜上不同化学势的增加,水的渗透率增加。随着膜的逐渐水化;当膜与液态水接触时。在非现场获得的透水率测量值与70oC下现场燃料电池水平衡测量值相关。背渗透(即,从阴极到阳极的水传输)很大程度上是由液-汽渗透驱动的,并且足以抵消电渗透的阻力通量(即,质子驱动的水向阴极的传输)。异位和原位水传输的测量范围扩展到厚度范围为6到201μm的膜。在液-液渗透条件下,水的渗透通量随着膜厚度的减小而增加。在液蒸气和蒸气蒸气渗透的条件下,水的渗透通量随着膜厚度的减小而增加,但对于低于56μm的厚度几乎不变。对内部和界面水传输阻力的估计表明,界面水传输阻力是薄膜的主要因素-解释了为什么在膜厚度降至56μm以下时,没有观察到液汽和汽汽渗透通量进一步增加的原因。发现在所有三种水渗透模式下,催化剂涂覆的膜和原始膜的水渗透率相似。催化剂层对膜水渗透的影响可以忽略不计。总之,发现膜/液体界面的形成增强了水通过Nafion®膜的渗透性。相反,膜/蒸气界面的存在降低了水的渗透速率。在燃料电池工作条件下,当在阴极处形成膜/液界面时,发现足够的反渗透速率有效地调节了燃料电池内的水平衡。

著录项

  • 作者

    Adachi Makoto;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号