首页> 外文OA文献 >Autonomous formation flying: unified control and collision avoidance methods for close manoeuvring spacecraft
【2h】

Autonomous formation flying: unified control and collision avoidance methods for close manoeuvring spacecraft

机译:自主编队飞行:紧密机动航天器的统一控制和避免碰撞方法

摘要

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. ududThe objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity.ududLinear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. ududLinear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error.ududAn adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma.ududIn order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.
机译:在最近几年中,以低空轨道最大基线为几百米的紧凑配置飞行的航天器编队的想法引起了广泛的关注。然而,控制航天器在编队中的运动会带来一些困难,例如在轨的高计算需求和避免碰撞的能力,随着编队中单元数量的增加以及复杂的非线性效应被施加到动力学上,这些问题会逐步升级。缺乏系统参数知识可能会导致不确定性。这些要求导致需要相对和绝对动态方面可靠的线性和非线性控制器。因此,本论文的目的是介绍新的控制方法,以允许航天器以圆形/椭圆形参考轨道编队,以有效地执行安全的自主操纵。这些控制器与大量文献的区别在于,它们将以前从未应用于航天器编队飞行和避撞能力的制导律合并为一个控制策略。为此,提出了三种控制方案:线性最优调节,线性最优估计和自适应非线性控制。一般而言,所提出的控制方法命令一个或几个跟随者相对于领导者的动态性能,以渐近地跟踪时变的名义轨迹(TVNT),同时通过排斥由 ud ud通过基于Riccati的跟踪控制器可实现线性最佳调节。在此控制策略内,控制器为所需的TVNT提供指导和跟踪,使用Riccati程序使用根据所需的TVNT定义的非无限成本函数优化燃油消耗,同时抵消CAS产生的加速度将确保燃料消耗之间的规避行为。形成要素。适用于圆形和偏心低地球参考轨道的相对动力学模型基于Tschauner和Hempel方程,包括控制输入和与CAS排斥加速度相对应的非线性项。 ud ud线性最佳估计是基于时间提前分离原理构建的。该控制器包括两个阶段:调节和估计。第一阶段需要使用通过估计器重建的状态向量设计全状态反馈控制器。第二阶段需要设计一个附加的动力学系统,即估计器,以获得无法测量的状态,以便近似重构整个状态向量。然后,分离原理说明为已知输入构建的观察者也可以用于估计系统状态并生成控制输入。通过利用线性二次调节器理论的优势,这可以独立设计观察者和反馈,以便估计具有模型和传感器不确定性的动力学系统的状态。在前一个控制器中使用的线性系统描述了相对动力学,在碰撞避免事件期间,通过来自CAS的排斥加速度输入了控制输入和非线性输入。此外,通过考虑载波相位差分GPS(CDGPS)速度测量误差,将传感器不确定性添加到控制过程中。 ud ud与确定性对等(CE)自适应算法相比,能够提供出色的闭环性能的自适应控制法则最后介绍控制器。介绍了一种基于沉浸不变性范式的新型不确定性等价控制器,用于在圆形和椭圆形低地球参考轨道上飞行的近地操纵航天器编队。所提出的控制方案通过将工厂动态浸入捕获所需动态行为的目标动态系统(或歧管)中来实现稳定。这种方法的关键特征是在经典确定性等价控制方法中增加了一个新术语,该方法与参数更新定律一起用于实现自适应稳定。该参数的最终任务是对自适应系统所浸入的歧管进行整形。通过基于Lyapunov的分析和Barbalat引理证明了控制器的性能稳定。 ud ud为了评估控制器的设计,基于原型研究仪器的物理和轨道特性以及太空任务技术进步,测试用例(PRISMA)已实施,将编队中的元素数量扩展到具有重新配置和椭圆低地球参考轨道上在轨位置切换的场景。提出了在有和没有CAS影响的情况下,控制器的性能在总Δv和燃油消耗方面的广泛分析和比较。这些结果表明,提出的三个控制器允许从动员渐近跟踪所需的标称轨迹,此外,包括CAS在内的那些模拟显示出在执行操作过程中有效降低了碰撞风险。

著录项

  • 作者

    Palacios Leonel M.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号