首页> 外文OA文献 >Characterization, host bioassay, and in vitro culture of indigenous entompathogenic nematodes and their bacterial symbionts
【2h】

Characterization, host bioassay, and in vitro culture of indigenous entompathogenic nematodes and their bacterial symbionts

机译:表征,寄主生物测定和本地昆虫致病性线虫及其细菌共生体的体外培养。

摘要

The prevailing use of chemical pesticides has generated several problems includingudinsecticide resistance, outbreak of secondary pests, safety risks for humans anduddomestic animals, contamination of ground water and decrease in biodiversity amongudother environmental concerns (Webster, 1982). These problems and the nonsustainabilityudof control programs based mainly on conventional insecticides haveudstimulated increased interest in the development and implementation of costeffective,udenvironmentally safe alternatives to chemical pesticides for insect pestudcontrol. One of the most promising strategies to help minimize dependence onudchemical pesticides has been the recent application of entomopathogenic nematodesud(EPNs) as biocontrol agents. EPNs in the families Steinernematidae andudHeterorhabdidae have been shown to have considerable potential as biological controludagents. As a natural process, biological control has the potential to play an importantudrole in the suppression of field crop pests in agriculture. EPNs as biocontrol agentsudhave the following advantages: high virulence, safety to non target organisms, abilityudto search for hosts, high efficacy in favourable habitats, high reproductive potential,udease of mass production, ease of application (Ferron & Deguine, 1996).udTo isolate the EPNs in South African soil, 200 soil samples were randomly collectedudfrom 5 locations in the agricultural research council (ARC) Pretoria, Gautengudprovince in April 2006; and 5 locations in Brits, North West province in March,ud2006. At the different collection sites, soil samples were obtained from soilsudassociated with various types of vegetation. The nematodes were collected fromudsandy soil by the insect-baiting technique and maintained successfully in vivo for 12udmonths on Galleria mellonella (G. mellonella), 4 months on Tenebrio molitor (T.molitor); 2 months Pupae and in vitro (lipid agar) for 2 weeks in the laboratory. Outudof a total of 200 soil samples that were baited, 2 were found to be positive for EPNs.EPNs.udIVudIn addition to completing Koch’s postulates, the colour of cadavers infected by theudputative EPNs were also used as a diagnostic characteristic for categorizing theudnematode isolates. Characterization and identification of the EPN isolates were basedudon morphological characters, as well as on a molecular marker (18S rDNA).udOn the basis of the morphological and molecular data that was obtained both of theudEPNs isolates were placed in the family Heterorhabdidae: Heterorhabditisudbacteriophora (H. bacteriophora) and Heterorhabditis zealandica (H. zealandica).udAlso from the phylogenetic trees generated from the 18S rDNA sequence, theudindigenous putative H. bacteriophora was shown to be closely related to H.udbacteriophora (accession number EF690469) and indigenous putative H. zealandicaudto H. zealandica (accession number AY321481). The two EPNs were foundudassociated with Gram negative rod-shaped bacteria. The bacterial symbionts of theudtwo isolates were isolated and a region of the 16S rDNA gene was sequenced.udNational Center for Biotechnology Information (NCBI-BLAST) results of the 16SudrDNA sequence obtained showed the endosybiotic bacteria to be Photorhabdusudluminescens laumondii (P. laumondii) (H. bacteriophora) and Photorhabdus sp (H.udzealandica). Results of the tree showed that isolates from H. bacteriophora appearedudto be closely related to P. luminescens subsp laumondii strain TT01 Ay 278646. Theudisolates from H. zealandica appeared to be most closely related to Photorhabdus sp Accession number: Q 614 Ay 216500).udBioassays were used to determine the infectivity of the two EPNs. In this experimentuddifferent infective juvenile (IJs) concentrations (5, 10, 25, 50, 100,200 400 and 500)udof the two EPNs were applied per G. mellonella; T. molitor larva and pupae. Theudbioassay was carried out in two parts. In the first part, mortality data was collected forudH. bacteriophora and H. zealandica. The results showed that the degree ofudsusceptibility of G. mellonella, T. molitor larvae and pupae to each nematode speciesudwas different. When 24 h post-exposure mortality data for larvae exposed to the IJs ofudH. bacteriophora and H. zealandica were analyzed, ANOVA showed no differences udVudin mortality between insects exposed to different H. bacteriophora IJ doses (Fig: 8.1udABC). However, there were significant differences in mortality between insectsudexposed to different IJ doses of H. zealandica such as 5 and 500 IJs/insect (Fig: 8.2udABC) Therefore, no differences were noted when mortality data was comparedudbetween IJ doses at both 72 h and 96 h following IJ application to the insects. Theudhighest susceptibility was observed with G. mellonella followed by T. molitor pupaeudand then T. molitor larvae. According to Caroli et al., (1996), the total mortality ofudinsect such as G. mellonella and other lepidopterans, was reached within 24-72 h ofudexposure to nematodes at concentrations such as those tested here. In this studyudsimilar results were observed with high concentration of nematodes (100, 200 andud500). In the second part of the dose response bioassay, the number of progeny IJsudemerging from EPN-infected cadavers was determined for all two EPNs.udThe results indicate that IJ progeny production differed among the three insect hostsudused, the IJ doses they were exposed to, as well as the EPN species (Figs 8.3 & 8.4).udThe highest number of emerged IJs of H. zealandica was produced by G. mellonellaud(mean ± SEM: 220500 ± 133933 IJs), followed by T. molitor larvae (mean ± SEM:ud152133 ± 45466 IJs) and the lowest then T. molitor pupae (mean ± SEM: 103366 ± 56933 IJs).
机译:化学杀虫剂的普遍使用产生了一些问题,包括对“ ” “ s s ” “ ” s “ ” u003s n n u003c u003b n n x {e76f} x {e76f} x {e76f}除其他环境因素外,人类和驯养动物的安全风险,地下水污染和生物多样性的减少(Webster,1982)。这些问题以及主要基于常规杀虫剂的非可持续性 udof防治计划已引起人们对开发和实施具有成本效益,环境安全的化学农药替代品以控制害虫 udud的兴趣日益浓厚。减少对化学农药的依赖性的最有希望的策略之一是昆虫病原线虫(EPNs)作为生物防治剂的最新应用。 Steinernematidae和 udHeterorhabdidae家族中的EPNs已被证明具有相当大的生物防治潜力。作为自然过程,生物防治可能在抑制农业中的田间作物害虫方面发挥重要作用。作为生物防治剂的EPN具有以下优点:高毒力,对非靶标生物的安全性,能够搜索宿主的能力,在有利的生境中具有较高的功效,较高的繁殖潜力,易于大规模生产,易于使用(Ferron&Deguine,为了分离南非土壤中的EPN,2006年4月从位于豪登省比勒陀利亚的农业研究委员会(ARC)的5个地点随机收集了200个土壤样品。 ud2006年3月在西北省Brits的5个地点。在不同的收集地点,从与各种植被相关联的土壤/土壤中获取土壤样品。通过昆虫诱饵技术从 udsandy土壤中收集线虫,并在Malleria mellonella(G. mellonella)上成功地在体内维持12个月,在Tenebrio molitor(T.molitor)上成功地维持4个月。 2个月的P和体外(脂琼脂)实验室2周。在总共200个诱饵的土壤样品中,发现有2个对EPNs呈阳性。EPNs。 udIV ud除了完成科赫的假设外,被 EPT感染的尸体的颜色也被用作诊断ud线虫分离株的分类特征。 EPN分离物的表征和鉴定基于 udon形态特征,以及分子标记(18S rDNA)。 ud基于获得的形态学和分子数据,两个 udEPN分离物均被置于该家族中杂种人科:杂种人细菌(H. bacteriophora)和新西兰杂种人H. zealandica(H。zealandica)。另外,从18S rDNA序列产生的系统进化树中,显示出与ud种假想的H.细菌有密切关系。 (登录号EF690469)和本地推定的H. zealandica udto H. zealandica(登录号AY321481)。发现两个EPN 与革兰氏阴性杆状细菌相关。分离出两个分离株的细菌共生体,并对16S rDNA基因的一个区域进行测序。获得的国家生物技术信息中心(NCBI-BLAST)获得的16S udrDNA序列结果显示,内生细菌为光生细菌。 (P. laumondii)(H. bacteriophora)和Photorhabdus sp(H. udzealandica)。该树的结果表明,来自细菌嗜血菌的分离株似乎与褐光假单胞菌劳蒙德氏菌TT01 Ay 278646密切相关。来自荷兰H. zealandica的分离株似乎与Photorhabdus sp最密切相关。登录号:Q 614 Ay 216500).ud生物测定法用于确定两种EPN的感染性。在该实验中,每株G. mellonella应用了两个EPN的不同的感染性少年(IJs)浓度(5、10、25、50、100、200、400和500)。 T. molitor幼虫和p。生物测定分两部分进行。在第一部分中,收集了 udH的死亡率数据。细菌和H. zealandica。结果表明,不同种类线虫,线虫幼虫和p对线虫的敏感性不同。暴露后24小时,暴露于 udH IJ的幼虫的死亡率数据。分析了细菌噬菌体和新西兰嗜血杆菌,方差分析显示暴露于不同细菌嗜酸杆菌IJ剂量的昆虫之间的 udV udin死亡率无差异(图:8.1 udABC)。但是,与不同IJ剂量的H. zealandica昆虫(例如5和500 IJs /只昆虫)相比,死亡率之间存在显着差异(图8.2 udABC)。因此,在比较IJ剂量之间的死亡率数据时,没有发现差异IJ施用到昆虫后的72小时和96小时。观察到最高的敏感性是:G。mellonella,然后是T. molitor up,然后是T. molitor幼虫。根据Caroli等人的说法(1996年),例如线虫暴露于线虫中的浓度达到此处所测试的浓度时,诸如马齿。和其他鳞翅目等昆虫的总死亡率达到了24-72小时。在这项研究中,在高浓度的线虫(100、200和 ud500)下观察到了相似的结果。在剂量反应生物测定法的第二部分中,确定了所有两个EPNs从受EPN感染的尸体中脱离的子代IJ的数量。 ud结果表明,在三个被滥用昆虫的IJ剂量中,它们的IJ子代产量有所不同。暴露于EPN物种以及EPN物种(图8.3和8.4)。 ud玉米H的最高IJ发生量是由G. mellonella ud(平均值±SEM:220500±133933 IJs)产生,然后是T 。molitor幼虫(平均±SEM: ud152133±45466 IJs)和最低的T. molitor up(平均±SEM:103366±56933 IJs)。

著录项

  • 作者

    Ngoma Lubanza;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号