首页> 外文OA文献 >Main Group and Transition Metal Complexes Supported by Multidentate Tripodal Ligands that Feature Nitrogen, Oxygen and Sulfur Donors: Synthesis, Structural Characterization and Appliations
【2h】

Main Group and Transition Metal Complexes Supported by Multidentate Tripodal Ligands that Feature Nitrogen, Oxygen and Sulfur Donors: Synthesis, Structural Characterization and Appliations

机译:具有氮,氧和硫给体的多齿三脚形配体支持的主族和过渡金属配合物:合成,结构表征和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Chapter 1 focuses on the computational study of Zr(CH2Ph)4 and chapter 2 discusses synthesis, characterization and density functional study of 2-imidazolethione. Chapters 3 - 6 describe the synthesis, structural characterization several multidentate tripodal ligands, namely tris(mercaptoimidazolyl)-hydroborato ligand, [TmR], tris(2-pyridylseleno)methyl ligand, [Tpsem], bis(2-pyridonyl)(pyridine-2-yloxy)methyl ligand, [O-poBpom] and allyl-tris(3-t-butylpyrazolyl)borato ligand, [allylTpBut], and their application to main group and transition metals. Chapter 1 describes the analysis of a monoclinic modification of Zr(CH2Ph)4 by single crystal X-ray diffraction, which reveals that the Zr-CH2-Ph bond angles in this compound span a range of 25.1°; that is much larger than previously observed for the orthorhombic form (12.1°;). In accord with this large range, density functional theory calculations demonstrate that little energy is required to perturb the Zr-CH2-Ph bond angles in this compound. Furthermore, density functional theory calculations on Me3ZrCH2Ph indicate that bending of the Zr-CH2-Ph moiety in the monobenzyl compound is also facile, thereby demonstrating that a benzyl ligand attached to zirconium is intrinsically flexible, such that its bending does not require a buffering effect involving another benzyl ligand. Chapter 2 describes the structure of 1-t-butyl-1,3-dihydro-2H-benzimidazole-2-thione which has been determined by X-ray diffraction. The compound exists in the chalcogenone form instead of chalcogenol form, which is similar to its oxo and selone counterparts. Comparison of 2-imidazolone, 2-imidazolethione and 2-imidazoleselone compounds shows that two N-C-E bond angles in the chalcogenone forms are not symmetric. This trend can be reproduced by density functional theory calculations. Additionally, H(mbenzimBut) has intermolecular hydrogen bonding interactions, whereas its selenium counterpart does not. The C-E bond lengths of 2-imidazolone, 2-imidazolethione and 2-imidazoleselone compounds are intermediate between those of formal C-E single and double bonds, which is in accord with the notion that zwitterionic structures that feature single C+-E- dative covalent bonds provide an important contribution in such molecules. Furthermore, NBO analysis of the bonding in H(ximBut) derivatives demonstrates that the doubly bonded C=E resonance structure is most significant for the oxygen derivative, whereas singly bonded C+-E- resonance structures dominate for the tellurium derivative. This result appears to be counterintuitive, based on the fact that it opposes the trend that one would expect on the basis of electronegativity difference, however, studies on XC(E)NH2 derivatives provide solid support for it. In this regard, the C~E bonding in these compounds is significantly different to that in chalcogenoformaldehyde derivatives for which the bonding is well represented by a H2C=E double bonded resonance structure. Chapter 3 describes the computational study on [TmMeBenz] anion and the synthesis and characterization of [TmButBenz]Na, [TmButBenz]Tl and [TmButBenz]Tl. It is worth noting that the two thallium compounds are the first structurally characterized monovalent monomeric [TmR]Tl complexes. Chapter 4 describes the synthesis and characterization of a few [TmR]M (M = Ti, Zr, Hf) complexes, including (i) Cp[TmBut]TiCl2 and Cp[TmBut]ZrCl2, which are analogues of Cp2TiCl2 and Cp2ZrCl2; (ii) [TmBut]Zr(CH2Ph)3 and (iii) [TmBut]Hf(CH2Ph)3 and [TmAd]Hf(CH2Ph)3, which are the first structurally characterized [TmR]Hf complexes. Chapter 5 describes two multidentate, L3X type ligands, which feature [CN3] and [CNO2] donors, namely tris(2 pyridylseleno)methane, [Tpsem]H, and bis(2-pyridonyl)(pyridin-2-yloxy)methane, [O-poBpom]H. They have been synthesized, characterized, and employed in the synthesis of zinc and cadmium complexes. Chapter 6 describes the synthesis and structural characterization of a new [Tp] ligand featuring an allyl substituent on the central boron atom, namely [allylTpBut]Li is reported. The compound reacts steadily with CH3CH2SH under 350 nm UV light via a thiol-ene click reaction. The resulting [CH3CH2S(CH2)3TpBut]Li complex can further react with metal halide. For example, the reaction of [CH3CH2S(CH2)3TpBut]Li with ZnI2 produced [CH3CH2S(CH2)3TpBut]ZnI at room temperature. This study provides a simple model on the immobilization of [Tp] metal complexes to the polymer chains with -SH terminals.
机译:第1章着重于Zr(CH2Ph)4的计算研究,第2章讨论了2-咪唑硫酮的合成,表征和密度泛函研究。第3-6章描述了几种多齿三脚架配体的合成,结构表征,即三(巯基咪唑基)-氢硼酸盐配体,[TmR],三(2-吡啶基硒代)甲基配体,[Tpsem],双(2-吡啶基)(吡啶- 2-羟氧基)甲基配体[O-poBpom]和烯丙基三(3-叔丁基吡唑基)硼酸酯配体[allylTpBut],及其在主要基团和过渡金属中的应用。第1章描述了通过单晶X射线衍射对Zr(CH2Ph)4进行单斜晶修饰的分析,结果表明该化合物中Zr-CH2-Ph键角在25.1°范围内。它比以前的正交晶形(12.1°;)大得多。在此范围内,密度泛函理论计算表明,只需很少的能量就能扰动该化合物中的Zr-CH2-Ph键角。此外,对Me3ZrCH2Ph的密度泛函理论计算表明,单苄基化合物中Zr-CH2-Ph部分的弯曲也很容易,从而证明与锆连接的苄基配体本质上是柔性的,因此其弯曲不需要缓冲作用涉及另一个苄基配体。第2章描述了通过X射线衍射测定的1-叔丁基-1,3-二氢-2H-苯并咪唑-2-硫酮的结构。该化合物以硫属酮形式存在,而不是硫属醇形式,这与它的羰基合成物和硒代庚酸酯类似。比较2-咪唑酮,2-咪唑硫酮和2-咪唑酮化合物,发现硫属元素酮形式的两个N-C-E键角不对称。这种趋势可以通过密度泛函理论计算得到再现。另外,H(mbenzimBut)具有分子间氢键相互作用,而其硒对应物则没有。 2-咪唑酮,2-咪唑硫酮和2-咪唑酮化合物的CE键长度介于正式的CE单键和双键之间,这与以单C + -E-共价键为特征的两性离子结构所提供的观念相一致。在这种分子中的重要贡献。此外,对H(ximBut)衍生物中键的NBO分析表明,双键C = E共振结构对氧衍生物最为重要,而单键C + -E共振结构对碲衍生物占主导地位。基于这一事实,它与人们基于电负性差异所期望的趋势相反,这一结果似乎是违反直觉的,然而,对XC(E)NH2衍生物的研究为其提供了坚实的支持。在这方面,这些化合物中的C〜E键与硫代甲醛衍生物的C〜E键明显不同,硫代甲醛衍生物的键由H2C = E双键共振结构很好地表示。第三章介绍了[TmMeBenz]阴离子的计算研究以及[TmButBenz] Na,[TmButBenz] Tl和[TmButBenz] Tl的合成与表征。值得注意的是,这两种al化合物是第一个在结构上表征的单价单体[TmR] T1复合物。第4章介绍了几种[TmR] M(M = Ti,Zr,Hf)配合物的合成和表征,包括(i)Cp [TmBut] TiCl2和Cp [TmBut] ZrCl2,它们是Cp2TiCl2和Cp2ZrCl2的类似物; (ii)[TmBut] Zr(CH2Ph)3和(iii)[TmBut] Hf(CH2Ph)3和[TmAd] Hf(CH2Ph)3,它们是第一个在结构上表征的[TmR] Hf配合物。第5章介绍了两个具有L3X型多齿配体,它们具有[CN3]和[CNO2]供体,即三(2吡啶基硒代)甲烷,[Tpsem] H和双(2-吡啶基)(吡啶-2-基氧基)甲烷, [O-poBpom] H。它们已被合成,表征并用于锌和镉络合物的合成。第6章描述了在中心硼原子上具有烯丙基取代基的新[Tp]配体的合成和结构表征,即[allylTpBut] Li。该化合物在350 nm紫外线下通过硫醇-烯点击反应与CH3CH2SH稳定反应。所得的[CH 3 CH 2 S(CH 2)3 TpBut] Li络合物可以进一步与金属卤化物反应。例如,[CH3CH2S(CH2)3TpBut] Li与ZnI2的反应在室温下生成了​​[CH3CH2S(CH2)3TpBut] ZnI。这项研究提供了一个简单的模型,用于将[Tp]金属络合物固定到具有-SH末端的聚合物链上。

著录项

  • 作者

    Rong Yi;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号