首页> 外文OA文献 >A novel discrete damage zone model and enhancement of the extended finite element method for fracture mechanics problems
【2h】

A novel discrete damage zone model and enhancement of the extended finite element method for fracture mechanics problems

机译:断裂力学问题的新型离散损伤区模型和扩展有限元方法的改进

摘要

This research develops two novel numerical methods for applications in fracture mechanics: (I) A new crack tip enrichment function in the extended finite element method (XFEM), and (II) a discrete damage zone model for quasi-static and fatigue delamination in composites. The first method improves XFEM when applied to general nonlinear materials when crack tip analytical solutions are not available. For linear elastic materials, Branch functions are commonly used as crack tip enrichments. Typically, these are four functions derived from linear elasticity theory and added as additional degrees of freedom. However, for general inelastic material behavior, where the analytical solution and the order of singularity are unknown, Branch functions are typically not used, and only the Heaviside function is employed. This however may introduce numerical error, such as inconsistency in the position of the crack tip. Hence, a special construction of Ramp function is proposed as tip enrichment, which may alleviate some of the problems associated with the Heaviside function when applied to general nonlinear materials, especially ones with no analytical solutions available. The idea is to linearly ramp down the displacement jump on the opposite sides of the crack to the actual crack tip, which may stop the crack at any point within an element, employing only one enrichment function. Moreover, a material length scale that controls the slope of the ramping is introduced to allow for better flexibility in modeling general nonlinear materials. Numerical examples for ideal and hardening elasto-plastic and elasto-viscoplastic materials are given, and the convergence studies show that a better performance is obtained by the proposed Ramp function in comparison with the Heaviside function. Nevertheless, when analytical functions, such as the Hutchinson-Rice-Rosengren (HRR) fields, do exist (for very limited material models), they indeed perform better than the proposed Ramp function. However, they also employ more degrees of freedom per node and hence are more expensive. The second method developed in this thesis is a discrete damage zone model (DDZM) to simulate delamination in composite laminates. The method is aimed at simulating fracture initiation and propagation within the framework of the finite element method. In this approach, rather than employing specific cohesive laws, we employ damage laws to prescribe both interface spring softening and bulk material stiffness degradation to study crack propagation. For a homogeneous isotropic material the same damage law is assumed to hold in both the continuum and the interface elements. The irreversibility of damage naturally accounts for the reduction in material strength and stiffness if the material was previously loaded beyond the elastic limit. The model parameters for interface element are calculated from the principles of linear elastic fracture mechanics. The model is implemented in Abaqus and numerical results for single-mode as well as mixed-mode delamination are presented. The results are in good agreement with those obtained from the virtual crack closure technique (VCCT) and available analytical solutions, thus, illustrating the validity of this approach. The suitability of the method for studying fracture in fiber-matrix composites involving fiber debonding and matrix cracking is demonstrated. Finally, the DDZM method is extended to account for temperature dependent fatigue delamination in composites. The interface element softening is described by a combination of static and fatigue damage growth laws so as to model delamination under high-cycle fatigue. The dependence of fatigue delamination on the ambient temperature is incorporated by introducing an Arrhenius type relation into the damage evolution law. Numerical results for mode I, mode II and mixed mode delamination growth under cyclic loading are presented and the model parameters are calibrated using previously published experimental data. Then, predictions are made under varying mode mix conditions and are compared with numerical results in the literature.
机译:这项研究开发了两种新颖的数值方法,用于断裂力学:(I)扩展有限元方法(XFEM)中的新裂纹尖端富集功能,以及(II)复合材料中准静态和疲劳分层的离散损伤区模型。当无法提供裂纹尖端分析解决方案时,第一种方法将XFEM应用于一般非线性材料时会得到改进。对于线性弹性材料,分支功能通常用作裂纹尖端的富集。通常,这是四个函数,它们是从线性弹性理论中得出的,并作为附加的自由度添加。但是,对于一般的非弹性材料行为,其中解析解和奇异阶数未知,通常不使用分支函数,而仅使用Heaviside函数。但是,这可能会引入数值误差,例如裂纹尖端的位置不一致。因此,提出了一种特殊的Ramp函数构造作为尖端富集,当将其应用于一般非线性材料时,尤其是在没有可用解析方法的情况下,可以减轻与Heaviside函数相关的一些问题。想法是线性地减小裂纹相对两侧的位移跃迁到实际裂纹尖端,这可以仅使用一个富集功能就可以在元素内的任何点停止裂纹。此外,引入了控制坡度斜率的材料长度刻度,以便在建模通用非线性材料时具有更好的灵活性。给出了理想的和硬化的弹塑性和弹黏塑性材料的数值示例,并且收敛研究表明,与Heaviside函数相比,所提出的Ramp函数获得了更好的性能。但是,当确实存在分析功能(例如Hutchinson-Rice-Rosengren(HRR)字段)(对于非常有限的材料模型)时,它们的性能确实好于建议的Ramp函数。然而,它们还在每个节点上采用更大的自由度,因此更加昂贵。本文开发的第二种方法是离散损伤区模型(DDZM),用于模拟复合材料层压板的分层。该方法旨在在有限元方法的框架内模拟裂缝的萌生和扩展。在这种方法中,我们没有采用特定的内聚规律,而是采用损伤规律来规定界面弹簧软化和块体材料刚度退化,以研究裂纹扩展。对于均质各向同性的材料,假定连续体和界面元素都具有相同的破坏定律。如果先前加载的材料超出弹性极限,则损坏的不可逆性自然会导致材料强度和刚度的降低。界面单元的模型参数是根据线性弹性断裂力学原理计算得出的。该模型在Abaqus中实现,并给出了单模以及混合模分层的数值结果。结果与从虚拟裂纹闭合技术(VCCT)和可用的分析解决方案获得的结果高度吻合,从而说明了该方法的有效性。证明了该方法在研究纤维-基体复合材料中涉及纤维脱粘和基体开裂的断裂的适用性。最后,DDZM方法得到扩展,以解决复合材料中与温度相关的疲劳分层问题。界面元素软化通过静态和疲劳损伤增长定律的组合来描述,以便对高周疲劳下的分层进行建模。通过将Arrhenius类型关系引入损伤演化定律,可以得出疲劳分层对环境温度的依赖性。给出了模式I,模式II和混合模式分层生长在循环载荷下的数值结果,并使用先前发布的实验数据对模型参数进行了校准。然后,在各种模式混合条件下进行预测,并将其与文献中的数值结果进行比较。

著录项

  • 作者

    Liu Xia;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号