首页> 外文OA文献 >Computational Studies of Intramolecular Hydrogen Atom Transfers in the ß-Hydroxyethylperoxy and ß -Hydroxyethoxy Radicals
【2h】

Computational Studies of Intramolecular Hydrogen Atom Transfers in the ß-Hydroxyethylperoxy and ß -Hydroxyethoxy Radicals

机译:ß-羟基乙基过氧自由基和ß-羟基乙氧基自由基中分子内氢原子转移的计算研究

摘要

u22The ß-hydroxyethylperoxy (I) and ß-hydroxyethoxy (III) radicals are prototypes of species that can undergo hydrogen atom transfer across their intramolecular hydrogen bonds. These reactions may play an important role in both the atmosphere and in combustion systems. We have used density functional theory and composite electronic structure methods to predict the energetics of these reactions, RRKM/master equation simulations to model the kinetics of chemically activated I, and variational transition state theory (TST) to predict thermal rate constants for the 1,5-hydrogen shift in I (Reaction 1) and the 1,4-hydrogen shift in III (Reaction 2). Our multi-coefficient Gaussian-3 calculations predict that Reaction 1 has a barrier of 23.59 kcal/mol, and that Reaction 2 has a barrier of 22.71 kcal/mol. These predictions agree rather well with the MPW1K and BB1K density functional theory predictions but disagree with predictions based on B3LYP energies or geometries. Our RRKM/master equation simulations suggest that almost 50% of I undergoes a prompt hydrogen shift reaction at pressures up to 10 Torr, but the extent to which I is chemically activated is uncertain. For Reaction 1 at 298 K, the variational TST rate constant is ~30% lower than the conventional TST result, and the microcanonical optimized multidimensional tunneling (OMT) method predicts that tunneling accelerates the reaction by a factor of 3. TST calculations on Reaction 2 reveal no variational effect and a 298 K OMT transmission coefficient of 105. The Eckart method overestimates transmission coefficients for both reactions.u22 [ACS abstract]http://pubs.acs.org/cgi-bin/abstract.cgi/jpcafh/asap/abs/jp0704113.html
机译:ß-羟乙基过氧(I)和ß-羟基乙氧基(III)是可通过其分子内氢键进行氢原子转移的物质的原型。这些反应在大气和燃烧系统中都可能起重要作用。我们使用密度泛函理论和复合电子结构方法来预测这些反应的能量,使用RRKM /主方程模拟来模拟化学活化的I的动力学,并使用变分过渡状态理论(TST)来预测1的热速率常数。 I中的5-氢转移(反应1)和III中的1,4-氢转移(反应2)。我们的多系数Gaussian-3计算预测反应1的势垒为23.59 kcal / mol,反应2的势垒为22.71 kcal / mol。这些预测与MPW1K和BB1K密度泛函理论的预测非常吻合,但与基于B3LYP能量或几何形状的预测不一致。我们的RRKM /主方程模拟表明,几乎50%的I在高达10 Torr的压力下都会发生迅速的氢转移反应,但是I被化学活化的程度尚不确定。对于298 K的反应1,TST速率变化常数比常规的TST结果低约30%,并且微规范优化多维隧穿(OMT)方法预测隧穿可将反应加速3倍。反应2的TST计算揭示无变异效应,且298 K OMT传输系数为105。Eckart方法高估了两种反应的传输系数。 u22 [ACS摘要] http://pubs.acs.org/cgi-bin/abstract.cgi/jpcafh/ asap / abs / jp0704113.html

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号