首页> 外文OA文献 >Dissipativity-based analysis and control of nonlinear process networks
【2h】

Dissipativity-based analysis and control of nonlinear process networks

机译:基于耗散性的非线性过程网络分析与控制

摘要

This thesis presents a number of new developments on decentralized analysis and control design of process networks - defined in this thesis as the interconnections of chemical process systems and their controllers - based on the theory of dissipative systems. In the proposed approach, each subsystem of a network is viewed as an input-output mathematical operator that can be dynamic and nonlinear depending on the physics ofeach process system and the configuration of its controllers. Each operator is further characterized by a dissipativity property that describes the behavioural constraints between its input and output. Quadratic dissipativity properties are particularly studied in this thesis to facilitate scalable applications to large-scale networks. Based on the dissipativity property of subsystems and the network topology, the overall dynamic performance of the network (in terms of H-infinity gain) can be determined using simple algebra. In this thesis, the use of physics (thermodynamics), geometric nonlinear techniques, and optimal control theory are investigated to characterize the dissipativity property of open-loop and closed-loop subsystems. All the above developments, which depend on the classical theory of dissipative systems, are sensitive to the equilibrium values of systems. Therefore, prior to the proposed study, a centralized steady-state analysis has to be completed to obtain this particular information. It also follows that if there are changes to the equilibrium values, both the centralized and dissipativity-based studies will have to be redone. In this view, the concept of incremental dissipativity is introduced to potentially enable free-equilibrium dissipativity-based study so that the analysis and control design tasks can be further decentralized (i.e., such that they can be completed with less centralized information). Each development in this thesis is illustrated using a simple network example.
机译:本文基于耗散系统理论,提出了过程网络的分散分析和控制设计的许多新进展-在本文中定义为化学过程系统及其控制器的互连。在提出的方法中,网络的每个子系统都被视为输入输出数学运算符,根据每个过程系统的物理特性及其控制器的配置,它可以是动态的和非线性的。每个操作员的特征还在于耗散性,该耗散性描述了其输入和输出之间的行为约束。本文专门研究二次耗散特性,以促进可扩展的应用到大规模网络。基于子系统的耗散特性和网络拓扑,可以使用简单的代数来确定网络的整体动态性能(就H无限增益而言)。本文研究了物理(热力学),几何非线性技术和最优控制理论的应用,以描述开环和闭环子系统的耗散特性。以上所有的发展都依赖于耗散系统的经典理论,对系统的平衡值很敏感。因此,在提出研究之前,必须完成集中的稳态分析以获得该特定信息。因此,如果平衡值发生变化,则必须重新进行集中式和耗散性研究。在这种观点下,引入了增量耗散性的概念以潜在地实现基于自由平衡耗散性的研究,从而可以进一步分散分析和控制设计任务(即使得它们可以使用较少的集中信息来完成)。本文使用一个简单的网络示例说明了本文的每个发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号