首页> 外文OA文献 >Quantification of geological uncertainty and mine planning risk using metric spaces
【2h】

Quantification of geological uncertainty and mine planning risk using metric spaces

机译:使用度量空间对地质不确定性和矿山规划风险进行量化

摘要

Major sources of financial risk for mining projects include geological uncertainty and uncertainty in future commodity prices, costs, demand levels and interest rates. Geological uncertainty is difficult to model as there are complicated spatial considerations which are not present in the other sources of uncertainty. Stochastic simulations are now the common approach to assessing geological uncertainty, and one of the most common practical methods of producing realisations is conditional sequential simulation. Conditional sequential simulation algorithms can create multiple realisations that honour the original histogram and covariance matrix. One of the shortcomings of the conditional simulation algorithms is that there is no parameter that can provide further information about high order statistics for generated realisations. By visually comparing the colour realisation images (if they are 2D), we can easily see uncaptured spatial differences; therefore, any possible dissimilarity or similarity between the realisations cannot be captured by descriptive geostatistics. Distance computation as a technique to measure dissimilarity or similarity between images, objects, and models has received attention in recent years. This thesis presents a formal measure of dissimilarity for generated realisations by adapting the Kantorovich metric to the geostatistics context. We propose a new methodology for mapping the space of uncertainty by a distance function that is based upon a physically meaningful notion of dissimilarity between pairs of realisations. We are able to quantify the dissimilarity of different realisations. In this framework, the pairwise dissimilarities between realisations can be used to make a relation or a precise mathematical structure between them, which can describe the variability of parameters on interest (for example, grade) inside the space of uncertainty. This method provides a powerful tool to address how realisations are connected to each other and how this connection (structure) can answer some controversial questions in geostatistical simulations. Furthermore, the mining processes such as mine optimisation, open pit design and long term scheduling are only able to handle relatively modest numbers of realisations. It is difficult to say how many realisations are required to achieve a prescribed level of accuracy based on a very large number of possible realisations. This method has the ability to construct a collection of schedules (coming from generated realisations) so that the overall uncertainty is captured in a way prescribed by the user. We argue that this small set of candidate schedules produce more robust outcomes than schedules selected by other existing risk-based approaches.
机译:采矿项目财务风险的主要来源包括地质不确定性和未来商品价格,成本,需求水平和利率的不确定性。地质不确定性很难建模,因为存在其他不确定性来源中不存在的复杂的空间考虑因素。现在,随机模拟是评估地质不确定性的常用方法,而有条件实现模拟是最常见的实现方法之一。条件顺序仿真算法可以创建多种实现,以兑现原始的直方图和协方差矩阵。条件仿真算法的缺点之一是没有参数可以提供有关生成实现的高阶统计信息的更多信息。通过视觉比较色彩实现图像(如果是2D),我们可以轻松地看到未捕获的空间差异;因此,描述性地统计学不能捕获实现之间任何可能的异同。距离计算作为一种测量图像,对象和模型之间的相似性或相似性的技术近年来受到关注。本文通过使Kantorovich度量适应地统计学背景,提出了一种形式化的形式,用于度量生成的实现的相异性。我们提出了一种新的方法,该方法通过距离函数来映射不确定性空间,该距离函数基于一对实现之间在物理上有意义的差异性概念。我们能够量化不同实现的差异。在此框架中,实现之间的成对差异可用于在它们之间建立关系或精确的数学结构,这可以描述不确定性空间内感兴趣参数(例如等级)的可变性。此方法提供了一个强大的工具,可以解决实现之间如何相互连接以及这种连接(结构)如何回答地统计学模拟中一些有争议的问题。此外,诸如矿山优化,露天矿设计和长期调度之类的采矿过程只能处理相对少量的实现。很难说要基于大量可能的实现需要多少个实现才能达到规定的精度水平。该方法具有构造时间表的集合(来自生成的实现)的能力,从而以用户指定的方式捕获总体不确定性。我们认为,与其他现有的基于风险的方法选择的时间表相比,这套候选时间表的产生效果更强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号