首页> 外文OA文献 >Characterization of cell mismatch in photovoltaic modules using electroluminescence and associated electro-optic techniques
【2h】

Characterization of cell mismatch in photovoltaic modules using electroluminescence and associated electro-optic techniques

机译:使用电致发光和相关的电光技术表征光伏模块中的电池失配

摘要

Solar cells allow the energy from the sun to be converted into electrical energy; this makes solar energy much more environmentally friendly than fossil fuel energy sources. These solar cells are connected together in a photovoltaic (PV) module to provide the higher current, voltage and power outputs necessary for electrical applications. However, the performance of the PV module is limited by the performance of the individual cells. Cell mismatch occurs when some cells are damaged or shaded and produce lower current output than the other cells in the series connected string. The cell mismatch lowers the module performance and can result in further damage as the weak cells are reverse biased and dissipate heat. Bypass diodes can be connected into the module to increase the module current output and prevent further damage. Since cell mismatch results in a significant decrease in the performance of deployed modules it is important to fully understand and characterise its effect on PV modules.PV modules can be characterised using various techniques, each providing important information about the performance of the module. Most commonly the current-voltage (I-V) characteristic curve of a module is measured in outdoor, fully illuminated conditions. This allows performance parameters such as short circuit current (Isc), open circuit voltage (Voc) and maximum power (Pmax) to be determined. In addition to this the shape of the curve allows device parameters like series and shunt resistances to be determined using parameter extraction algorithms like Particle Swarm Optimisation (PSO). The extracted parameters can be entered into the diode equation to model the I-V curve of the module. The I-V characteristic of the module can also be used to identify poor current producing cells in the module by using the worst-case cell determination method. In this technique a cell is shaded and the greater the drop in current in the whole module the better the current production of the shaded cell. The photoresponse of cells in a module can be determined by the Large-area Light Beam Induced Current (LA-LBIC) technique which involves scanning a module with a laser beam and recording the current generated. Electroluminescence (EL) is emitted by a forward biased PV module and is used to identify defects in cell material. Defects such as cracks and broken fingers can be detected as well as material features such as grain boundaries. These techniques are used to in conjunction to characterise the modules used in this study. The modules investigated in this study each exhibit cell mismatch resulting from different causes. Each module is characterised using a combination of characterisation techniques which allows the effect of cell mismatch be investigated. EL imaging enabled cracks and defects, invisible to the naked eye, to be detected allowing the reduced performance observed in I-V curves to be explained. It was seen that the cracked cells have a significant effect on the current produced by a string, while the effect of delaminated areas is less severe. Hot spots are observed on weak cells indicating they are in reverse bias conditions and will degrade further with time. PSO parameter extraction from I-V curves revealed that the effect of module degradation of device parameters like series and shunt resistances. A module with cracked cells and degradation of the antireflective coating has low shunt resistance indicating current losses due to shunting. Similar shunting is observed in a module with delamination and moisture ingress. The extracted parameters are used to simulate the I-V curves of modules with reasonable fit. The fit could be improved around the “knee” of the I-V curve by improving the methods of parameter extraction.This study has shown the effects of cell mismatch on the performance and I-V curves of the PV modules. The different causes of cell mismatch are discussed and modules with different cell configuration and damage are characterised. The characterisation techniques used on each module provide information about the photoresponse, current generation, material properties and cell defects. A comprehensive understanding of these techniques allows the cell mismatch in the modules to be fully characterised
机译:太阳能电池可以将来自太阳的能量转化为电能。这使得太阳能比化石燃料能源对环境更加友好。这些太阳能电池在光伏(PV)模块中连接在一起,以提供电气应用所需的更高电流,电压和功率输出。但是,PV模块的性能受到单个电池性能的限制。当某些电池损坏或遮蔽并产生比串联连接的串中其他电池更低的电流输出时,就会发生电池不匹配。电池失配会降低模块性能,并可能会导致弱电池反向偏置并散发热量,从而进一步造成损坏。旁路二极管可以连接到模块中,以增加模块电流输出并防止进一步损坏。由于电池失配会导致已部署模块的性能显着下降,因此重要的是要充分了解并表征其对PV模块的影响。可以使用多种技术来表征PV模块,每种技术都可提供有关模块性能的重要信息。最常见的是,模块的电流-电压(I-V)特性曲线是在室外完全照明的条件下测量的。这允许确定性能参数,例如短路电流(Isc),开路电压(Voc)和最大功率(Pmax)。除此之外,曲线的形状还允许使用参数提取算法(例如粒子群优化(PSO))来确定设备参数(例如串联电阻和分流电阻)。提取的参数可以输入到二极管方程中,以对模块的I-V曲线建模。通过使用最坏情况的电池确定方法,模块的I-V特性还可用于识别模块中不良的电流产生电池。在这种技术中,电池被遮蔽,并且整个模块中的电流下降越大,阴影电池的电流产生越好。可以通过大面积光束感应电流(LA-LBIC)技术确定模块中细胞的光响应,该技术涉及用激光束扫描模块并记录产生的电流。电致发光(EL)由正向偏置的PV模块发射,用于识别电池材料中的缺陷。可以检测到诸如裂纹和手指断裂之类的缺陷以及诸如晶界之类的材料特征。这些技术被用来共同表征本研究中使用的模块。在这项研究中研究的模块各自显示出由不同原因引起的细胞失配。每个模块都使用组合的表征技术进行表征,这些技术可以研究细胞错配的影响。 EL成像可以检测到肉眼看不见的裂缝和缺陷,从而可以解释在I-V曲线中观察到的性能下降。可以看出,破裂的电池对弦产生的电流具有显着的影响,而分层区域的影响较小。在弱电池上观察到热点,表明它们处于反向偏置状态,并且会随着时间的推移而进一步退化。从I-V曲线中提取PSO参数表明,模块参数对诸如串联电阻和分流电阻之类的器件退化的影响。具有破裂单元和抗反射涂层退化的模块具有较低的分流电阻,表明由于分流导致的电流损耗。在具有分层和湿气进入的模块中观察到类似的分流。提取的参数用于模拟具有合理拟合度的模块的I-V曲线。可以通过改进参数提取方法来改善I-V曲线“拐点”附近的拟合度。这项研究显示了电池失配对PV模块性能和I-V曲线的影响。讨论了电池不匹配的不同原因,并对具有不同电池配置和损坏的模块进行了表征。每个模块上使用的表征技术可提供有关光响应,电流产生,材料特性和电池缺陷的信息。对这些技术的全面理解可使模块中的电池失配得到充分表征

著录项

  • 作者

    Crozier Jacqueline Louise;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号