首页> 外文OA文献 >Design and optimization of turbo-expanders for organic rankine cycles
【2h】

Design and optimization of turbo-expanders for organic rankine cycles

机译:用于有机朗肯循环的涡轮膨胀机的设计和优化

摘要

In a world focused on the need to produce energy for a growing population, while reducing atmospheric emissions of carbon dioxide, organic Rankine cycles represent a solution to fulfil this goal. This study focuses on the design and optimization of axial-flow turbines for organic Rankine cycles. From the turbine designer point of view, most of this fluids exhibit some peculiar characteristics, such as small enthalpy drop, low speed of sound, large expansion ratio. A computational model for the prediction of axial-flow turbine performance is developed and validated against experimental data. The model allows to calculate turbine performance within a range of accuracy of ±3%. The design procedure is coupled with an optimization process, performed using a genetic algorithm where the turbine total-to-static efficiency represents the objective function. The computational model is integrated in a wider analysis of thermodynamic cycle units, by providing the turbine optimal design. First, the calculation routine is applied in the context of the Draugen offshore platform, where three heat recovery systems are compared. The turbine performance is investigated for three competing bottoming cycles: organic Rankine cycle (operating cyclopentane), steam Rankine cycle and air bottoming cycle. Findings indicate the air turbine as the most efficient solution (total-to-static efficiency = 0.89), while the cyclopentane turbine results as the most flexible and compact technology (2.45 ton/MW and 0.63 m3/MW). Furthermore, the study shows that, for organic and steam Rankine cycles, the optimal design configurations for the expanders do not coincide with those of the thermodynamic cycles. This suggests the possibility to obtain a more accurate analysis by including the computational model in the simulations of the thermodynamic cycles. Afterwards, the performance analysis is carried out by comparing three organic fluids: cyclopentane, MDM and R245fa. Results suggest MDM as the most effective fluid from the turbine performance viewpoint (total-to-total efficiency = 0.89). On the other hand, cyclopentane guarantees a greater net power output of the organic Rankine cycle (P = 5.35 MW), while R245fa represents the most compact solution (1.63 ton/MW and 0.20 m3/MW).udFinally, the influence of the composition of an isopentane/isobutane mixture on both the thermodynamic cycle performance and the expander isentropic efficiency is investigated. Findings show how the mixture composition affects the turbine efficiency and so the cycle performance. Moreover, the analysis demonstrates that the use of binary mixtures leads to an enhancement of the thermodynamic cycle performance.
机译:在一个关注不断增长的人口生产能源的需求,同时减少大气中二氧化碳排放的世界中,有机朗肯循环代表了实现这一目标的解决方案。这项研究的重点是用于有机朗肯循环的轴流式涡轮机的设计和优化。从涡轮机设计者的角度来看,大多数这种流体表现出一些特殊的特性,例如焓降小,声速低,膨胀比大。开发了用于预测轴流式涡轮机性能的计算模型,并针对实验数据进行了验证。该模型允许在±3%的精度范围内计算涡轮机性能。设计过程与优化过程相结合,该过程使用遗传算法执行,其中涡轮机的总静态效率代表目标函数。通过提供涡轮优化设计,该计算模型被集成到热力循环单元的更广泛分析中。首先,将计算程序应用于Draugen海上平台,在该平台上比较了三个热回收系统。研究了三个竞争性的底部循环的涡轮机性能:有机朗肯循环(运行环戊烷),蒸汽朗肯循环和空气底部循环。研究结果表明,空气涡轮机是最有效的解决方案(总静电效率= 0.89),而环戊烷涡轮机则是最灵活,最紧凑的技术(2.45吨/ MW和0.63 m3 / MW)。此外,研究表明,对于有机朗肯循环和蒸汽朗肯循环,膨胀机的最佳设计配置与热力循环的最佳设计配置不一致。这暗示了通过将计算模型包括在热力学循环的模拟中来获得更准确的分析的可能性。然后,通过比较三种有机流体:环戊烷,MDM和R245fa进行性能分析。从涡轮机性能的角度来看,结果表明MDM是最有效的流体(总效率= 0.89)。另一方面,环戊烷可确保有机朗肯循环的更大净功率输出(P = 5.35 MW),而R245fa代表最紧凑的解决方案(1.63吨/ MW和0.20 m3 / MW)。 ud最后,研究了异戊烷/异丁烷混合物的组成对热力学循环性能和膨胀剂等熵效率的影响。研究结果表明混合物成分如何影响涡轮效率,从而影响循环性能。此外,分析表明,使用二元混合物可提高热力学循环性能。

著录项

  • 作者

    Gabrielli Paolo;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号