首页> 外文OA文献 >Optimization of the data processing methodology and accuracy analysis of airborne laser scanning data applied for local spatial planning
【2h】

Optimization of the data processing methodology and accuracy analysis of airborne laser scanning data applied for local spatial planning

机译:机载激光扫描数据数据处理方法的优化和精度分析,用于局部空间规划

摘要

Aerial laser scanning (lidar) has become a widely used technique for spatial data production. Although various rigorous error models of aerial laser scanning already exist and examples of a-posteriori studies of aerial laser scanning data accuracies verified with field-work can be found in the literature, a simple measure to define a-priori error sizes is not available. In this work the aerial laser scanning error contributions are described in detail: the basic systematic error sources, the flight-mission-related error sources and the target-characteristic-related error sources. A review of the different error-source sizes is drawn from the literature in order to define the boundary conditions for each error size. Schenk’s geolocation equation is used as a basis for deriving a simplified a-priori error model. By changing different geometrical parameters the simulation of error sizes is made and the influence of different error sources is studied. This simplified error model enables a quick calculation and gives a-priori plausible values for the average and maximum error size, independent of the scan and heading angles as well as being independent of any specific aerial laser scanning system’s characteristics. Spatial data production by aerial laser scanning is also limited by acquisition precision. The acquisition precision is defined by spatial data products (in our case: geodetic data for local spatial planning). The acquisition precision of spatial data products also defines the minimum point density of aerial laser scanning. The minimum point density when applying aerial laser scanning as a stand-alone-technique is defined through minimal sampling density or Nyquist frequency. Through measuring penetration rate for different vegetation classes in the test area the total usable point density is defined. The a-priori aerial laser scanning accuracy and spatial data product precision defines when the aerial laser scanning can be applied in data extraction process in Slovenia. Through this the acquisition methodology for different geodetic data for local spatial planning production can be optimized. The review on legal acts defining the local spatial planning is given. The current and proposed data processing methodology for different geodetic data used for local spatial planning is described.
机译:航空激光扫描(激光雷达)已成为空间数据生产中广泛使用的技术。尽管航空激光扫描的各种严格误差模型已经存在,并且经过野外工作验证的航空激光扫描数据准确性的后验研究实例可以在文献中找到,但定义先验误差大小的简单方法尚不可用。在这项工作中,详细描述了航空激光扫描误差的贡献:基本的系统误差源,与飞行任务有关的误差源以及与目标特性有关的误差源。为了确定每种误差大小的边界条件,从文献中回顾了不同的误差源大小。申克的地理位置方程式被用作推导简化的先验误差模型的基础。通过改变不同的几何参数,可以对误差大小进行仿真,并研究不同误差源的影响。这种简化的误差模型可以快速进行计算,并给出平均和最大误差大小的先验合理值,而与扫描和航向角以及任何特定的航空激光扫描系统的特性无关。空中激光扫描产生的空间数据也受到采集精度的限制。采集精度由空间数据产品定义(在我们的示例中:用于局部空间规划的大地测量数据)。空间数据产品的采集精度还定义了航空激光扫描的最小点密度。通过最小采样密度或奈奎斯特频率定义将航空激光扫描作为独立技术使用时的最小点密度。通过测量测试区域中不同植被类别的渗透率,可以定义总可用点密度。先验的空中激光扫描精度和空间数据乘积精度定义了何时可以将空中激光扫描应用于斯洛文尼亚的数据提取过程。通过这种方式,可以优化用于本地空间规划生产的不同大地测量数据的采集方法。对定义局部空间规划的法律行为进行了回顾。描述了用于局部空间规划的不同大地测量数据的当前和建议的数据处理方法。

著录项

  • 作者

    Triglav Čekada Mihaela;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"sl","name":"Slovene","id":39}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号