首页> 外文OA文献 >Nanophotonic Interconnect Architectures For Many-Core Microprocessors
【2h】

Nanophotonic Interconnect Architectures For Many-Core Microprocessors

机译:用于多核微处理器的纳米光子互连体系结构

摘要

Nanophotonics is an emerging technology that has the potential to improve the performance and energy consumption of inter- and intra-die communication in future chip multiprocessors. To date, the successful demonstration of a working large-scale system has been hampered by integration challenges and temperature sensitivity of the optical building blocks. Moreover, current approaches to interfacing with these devices are either CMOS incompatible or degrade the potential Tb/s modulation capability to only tens of Gb/s. At first glance it may seem like all of these challenges hint at today's nanophotonic devices being too impractical. However, using a combination of proposed solutions at the device and architectural level, a rich tradeoff space begins to emerge that is still largely untouched due to the knowledge gap between nanophotonic researchers on both sides of the spectrum. To this end, this dissertation attempts to fill this gap by targeting both device and system level research in an integrated fashion. We begin with an extended background and related work section that presents the relevant parameters and functionality of key optical devices for designing interconnection networks at the architecture level. Following this, we give a detailed discussion on the system level implications of optics including communication methods and summaries of recent network architectures for both on-chip and off-chip signaling with important takeaways for designing future systems. The lack of a comprehensive and accurate modeling strategy for optical com- ponents in the architecture community has lead to potentially inaccurate, and inflated, power and performance estimates. Since better representation of optical devices in architectural level simulations is essential to producing trustworthy results, we present a comprehensive, mathematical model for all of the major optical building blocks. To our knowledge, this is the first comprehensive model of all relevant optical devices specifically tailored to system level design for architects. An interesting aspect of architectural research in the field of optics is that there is not a natural progression of scaling parameters that will necessarily dictate future designs as is the case in CMOS. Because nanophotonics is an emerging technology, the potential is limitless for creating new devices that solve previous challenges. Optical packet switching is a promising approach for overcoming the performance and power limitations of bus-based on-chip networks. We present two variations of Phastlane, the first proposed nanophotonic packet switched architecture. In our evaluation, we demonstrate the potential improvements in system performance and power consumption across a range of modulator and receiver parameters. We also augment this analysis with projections for current optical devices using our mathematical device model. Finally, we propose alternatives for overcoming some of the limitations of both Phastlane architectures in the event that future optical components stagnate at current performance and power consumption. Also, we use our device model to explore a less aggressive approach to nanophotonics that judiciously combines electrical and optical interconnect.
机译:纳米光子学是一种新兴技术,具有改善未来芯片多处理器中芯片间和芯片内通信的性能和能耗的潜力。迄今为止,光学构建模块的集成挑战和温度敏感性阻碍了成功运行的大型系统的演示。此外,当前与这些设备接口的方法要么是CMOS不兼容,要么是将潜在的Tb / s调制能力降低到只有几十Gb / s。乍看起来,所有这些挑战似乎暗示着当今的纳米光子器件太不切实际了。但是,结合使用在设备和体系结构级别上提出的解决方案,由于在光谱两侧的纳米光子研究人员之间的知识鸿沟,开始出现了一个巨大的权衡空间,而该权衡空间仍然很大程度上未被触及。为此,本论文试图以集成方式针对设备和系统级研究来填补这一空白。我们从扩展的背景和相关工作部分开始,该部分介绍了用于在体系结构级别设计互连网络的关键光学设备的相关参数和功能。在此之后,我们将详细讨论光学对系统级的影响,包括通信方法以及片上和片外信令的最新网络架构摘要,以及设计未来系统的重要内容。在架构界,缺乏针对光学元件的全面,准确的建模策略,导致功率和性能估计可能不准确,甚至过高。由于在建筑级仿真中更好地表示光学设备对于产生可信赖的结果至关重要,因此我们为所有主要的光学构件提供了全面的数学模型。据我们所知,这是专门针对建筑师的系统级设计而定制的所有相关光学设备的第一个综合模型。光学领域的建筑研究中一个有趣的方面是,没有按比例缩放参数的自然发展会像CMOS中那样必然决定未来的设计。由于纳米光子学是一项新兴技术,因此创造出解决先前挑战的新设备的潜力是无限的。光分组交换是一种克服基于总线的片上网络的性能和功率限制的有前途的方法。我们介绍了Phastlane的两个变体,这是第一个提出的纳米光子分组交换体系结构。在我们的评估中,我们证明了在一系列调制器和接收器参数上,系统性能和功耗方面的潜在改进。我们还使用数学设备模型通过对当前光学设备的预测来扩展此分析。最后,如果未来的光学组件因当前的性能和功耗而停滞不前,我们提出了替代方案来克服两种Phastlane体系结构的局限性。此外,我们使用我们的设备模型来探索一种不太积极的纳米光子学方法,该方法明智地将电和光互连结合在一起。

著录项

  • 作者

    Cianchetti Mark;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号