首页> 外文OA文献 >Shortest Path Problems: Domain Restriction, Anytime Planning, and Multi-objective Optimization
【2h】

Shortest Path Problems: Domain Restriction, Anytime Planning, and Multi-objective Optimization

机译:最短路径问题:域限制,随时计划和多目标优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Optimal path problems arise in many applications and several efficient methods are widely used for solving them on the whole domain. However, practitioners are often only interested in the solution at one specific source point, i.e. the shortest path to the exit-set from a particular starting location. This thesis will focus on three separate, but related, problems of this form. We employ solution methods that discretize the computational domain and recover an approximate solution to the shortest path problem. These methods either solve the problem on a geometrically embedded graph or approximate the viscosity solution to a static Hamilton-Jacobi PDE.Such paths can be viewed as characteristics of static Hamilton-Jacobi equations, so we restrict the computations to a neighborhood of the characteristic. We explain how heuristic under/over-estimate functions can be used to obtain a {em causal} domain restriction, significantly decreasing the computational work without sacrificing convergence under mesh refinement. The discussed techniques are inspired by an alternative version of the classical A* algorithm on graphs. We illustrate the advantages of our approach on continuous isotropic examples in 2D and 3D. We compare its efficiency and accuracy to previous domain restriction techniques and analyze the behavior of errors under the grid refinement.However, if the heuristic functions used are very inaccurate this can lead to A*-type methods providing little to no restriction. One solution is to scale-up the underestimate functions used so that they become more accurate on parts of the domain. However, this will cause the algorithm to recover suboptimal, albeit locally optimal, solutions. These algorithms quickly produce an initial suboptimal solution that is iteratively improved. This ensures early availability of a good suboptimal path before the completion of the search for a globally optimal path. We illustrate the algorithm on examples where previous A*-FMM algorithms are unable to provide significant savings due to the poor quality of the heuristics.Finally we present a related algorithm for finding optimal paths on graphs with respect to two criteria simultaneously. Our approach is based on augmenting the state space to keep track of the ``budget'' remaining to satisfy the constraints on secondary cost. The resulting augmented graph is acyclic and the primary cost can be then minimized by a simple upward sweep through budget levels. The efficiency and accuracy of our algorithm is tested on Probabilistic Roadmap graphs to minimize the distance of travel subject to a constraint on the overall threat exposure to enemy observers.
机译:最佳路径问题出现在许多应用中,几种有效的方法被广泛用于在整个领域中解决它们。但是,从业人员通常只对一个特定源点上的解决方案感兴趣,即从特定起始位置到退出集的最短路径。本文将重点讨论这种形式的三个独立但相关的问题。我们采用离散化计算域的解决方案方法,并恢复了最短路径问题的近似解决方案。这些方法要么在几何嵌入图上解决问题,要么将粘度解近似为静态Hamilton-Jacobi PDE。此类路径可以看作是静态Hamilton-Jacobi方程的特征,因此我们将计算限制在特征的附近。我们解释了启发式低估/高估函数如何可用于获得{ em causal}域约束,从而显着减少计算工作而又不牺牲网格细化下的收敛性。所讨论的技术是受图上经典A *算法的替代版本启发的。我们在2D和3D连续各向同性示例中说明了我们的方法的优势。我们将其效率和准确性与以前的域限制技术进行了比较,并分析了网格细化下的错误行为,但是,如果使用的启发式函数非常不准确,则可能导致A *型方法几乎没有限制。一种解决方案是扩大使用的低估功能,以使它们在域的某些部分上变得更加准确。但是,这将导致算法恢复次优解,尽管局部最优。这些算法快速产生了初始的次优解决方案,该解决方案经过迭代改进。这样可以确保在完成全局最佳路径的搜索之前尽早获得良好的次优路径。我们在示例中说明了该算法,其中由于启发式算法的质量较差,以前的A * -FMM算法无法提供大量节省。最后,我们提出了一种相关的算法,用于同时针对两个条件在图上找到最佳路径。我们的方法基于扩大状态空间以跟踪剩余的``预算'',以满足对次级成本的约束。生成的扩充图是非循环的,然后可以通过简单地向上浏览预算水平来使主要成本最小化。我们的算法的效率和准确性已在概率路线图上进行了测试,以最大程度地减少行进距离,而这要视对敌方观察者的总体威胁暴露而定。

著录项

  • 作者

    Clawson Zachary David;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号