首页> 外文OA文献 >Characterization Of Microbial Life Colonizing Biochar And Biochar-Amended Soils
【2h】

Characterization Of Microbial Life Colonizing Biochar And Biochar-Amended Soils

机译:微生物生活定居在生物炭和生物炭改良土壤中的特性

摘要

Soil microorganisms and their activities are critical for soil function, thus, understanding how biochar soil amendment may affect soil microbial life is critical for assuring that soil quality and the integrity of the soil subsystem are maintained. In this study, I characterized microbial life colonizing biochar and biochar-amended soils sampled from the Cornell Musgrave Farm, Aurora, NY, to study the effects of biochar soil amendment on microbial abundance; basal respiration; metabolic quotient (qCO2); carbon, nitrogen and phosphorus exoenzyme activities and locations; microbial community composition; and, the identity of the dominant fungi colonizing biochar. Microbial biomass carbon (MBC), measured by simultaneous chloroform fumigation extraction, was impaired by the adsorption of 47.5% more dissolved organic carbon (DOC) liberated from cells to 30 t ha-1 biochar-amended soils than to unamended control soils. Adjusted by use of the Freundlich model to correct for DOC adsorption, MBC increased by 18.5-37.5% with an increase in the biochar application rate from 12 to 30 t biochar ha-1. Meanwhile, high biochar-amended soils had lower basal respiration, which resulted in lower values for qCO2. These results indicate a possible increase in microbial carbon use efficiency and a decrease in C turnover in response to biochar addition. I found the 30 t ha-1 biochar-amended soils had 615.3% and 15.0% higher activities of alkaline phosphatase and aminopeptidase, but 81.3% and 82.2% lower activities of beta-D-glucosidase and beta-D-cellobiase, respectively, than those in the unamended control soils. This indicates a low demand for C substrate relative to cell needs for N or P in response to biochar addition. These results suggest that the changes observed qCO2 in biochar-amended soils may indeed be linked to increased microbial C use efficiency. We also localized the presence of active alkaline phosphatase and beta-D-glucuronidase particularly on biochar particles using EnzymeLabeled Fluorescence (ELF) and visualized bacterial cocci and bacilli and thread-like fungal hyphae either on or in the biochar porous structure using scanning electron microscopy. PCR-T-RFLP fingerprinting analyses revealed that both the bacterial and fungal community compositions were affected strongly by biochar addition and did respond differently to different biochar application rates and time since biochar was applied. Furthermore, sequenced fungal internal transcribed spacer (ITS) regions revealed a shift, from families of the Basidiomycota and Ascomycota, to families of the Zygomycota and Glomeromycota (arbuscular mycorrhizal fungi, AMF) in response to biochar addition, thus, I suggest that the adsorption of essential nutrients on biochar allows these fungi to colonize, produce exoenzymes and meet their mineral nutrient needs. The recalcitrance of biochar suggests that the septate fungi (mainly from families of the Basidiomycota and Ascomycota) may not be able to meet their carbon needs from biochar and thus are not encouraged to colonize. To conclude, our data suggest that profound changes in soil microbial communities are occurring in biochar amended soils that apparently lead to tighter cycling and reduced system loss of both nutrients and carbon. Biochar clearly influences the diversity of microbes colonizing its surfaces, their activities and their abundance, with a net result of the conservation of resources within the soil system.
机译:土壤微生物及其活动对于土壤功能至关重要,因此,了解生物炭土壤改良剂如何影响土壤微生物寿命对于确保维持土壤质量和土壤子系统的完整性至关重要。在这项研究中,我表征了从纽约州奥罗拉康奈尔·马斯格雷夫农场(Cornell Musgrave Farm)采样的微生物生命定殖的生物炭和经过生物炭改良的土壤,以研究生物炭土壤改良剂对微生物丰度的影响。基础呼吸代谢商(qCO2);碳,氮和磷的外酶活性和位置;微生物群落组成;以及主要真菌定植生物炭的身份。通过同时氯仿熏蒸抽提法测量的微生物生物量碳(MBC)受从细胞释放的溶解有机碳(DOC)吸附到30 t ha-1生物炭改良土壤中的吸附比未改良对照土壤吸附多47.5%。通过使用Freundlich模型进行调整以校正DOC吸附,随着生物炭施用量从12 t到30 t biochar ha-1的增加,MBC增加了18.5-37.5%。同时,高生物炭改良土壤的基础呼吸较低,这导致较低的qCO2值。这些结果表明,响应于添加生物炭,微生物碳利用效率可能增加,而碳转化率可能下降。我发现,经过30 t ha-1生物炭处理的土壤比碱性磷酸酶和氨肽酶的活性高615.3%和15.0%,但β-D-葡萄糖苷酶和β-D-纤维二糖酶的活性分别低81.3%和82.2%。那些未经修改的对照土壤。这表明相对于响应生物炭添加的细胞对N或P的需求,对C底物的需求较低。这些结果表明,在生物炭改良过的土壤中观察到的qCO2的变化确实与微生物碳利用效率的提高有关。我们还使用酶标记荧光(ELF)定位了活性碱性磷酸酶和β-D-葡萄糖醛酸酶的存在,特别是在生物炭颗粒上,并使用扫描电子显微镜观察了生物炭多孔结构上或之中的细菌球菌和杆菌和线状真菌菌丝。 PCR-T-RFLP指纹分析表明,细菌和真菌群落组成都受到生物炭添加的强烈影响,并且自应用生物炭以来,对不同生物炭的施用率和时间的反应不同。此外,测序的真菌内部转录间隔区(ITS)区域显示了响应于生物炭添加的变化,从担子菌和子囊菌的家庭转移到了合子菌和球菌的家庭(丛枝菌根真菌,AMF),因此,我建议吸附生物炭中必需的营养素含量高,可使这些真菌定居,产生外切酶并满足其矿物质营养素需求。生物炭的顽固性表明,分离出的真菌(主要来自担子菌属和子囊菌属)可能无法满足生物炭的碳需求,因此不鼓励其定居。总而言之,我们的数据表明,在经过生物炭改良的土壤中,土壤微生物群落发生了深刻变化,这显然导致了更严格的循环并减少了养分和碳的系统损失。生物炭明显影响定居在其表面的微生物的多样性,它们的活动及其丰富度,其净结果是土壤系统内资源的节约。

著录项

  • 作者

    Jin Hongyan;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号