首页> 外文OA文献 >Selection and Analysis of Minimal Sets of Enzyme Levels and Regulatory Structures for Optimization of Microbial Overproduction Using Large-Scale Kinetic Models of Cellular Systems
【2h】

Selection and Analysis of Minimal Sets of Enzyme Levels and Regulatory Structures for Optimization of Microbial Overproduction Using Large-Scale Kinetic Models of Cellular Systems

机译:使用细胞系统的大规模动力学模型选择和分析最小水平的酶水平和调控结构,以优化微生物的过量生产

摘要

We introduce a hybrid deterministic/stochastic optimization modeling framework to identify minimal sets of enzyme levels and enzyme regulatory structures to meet significant overproduction requirements using large-scale kinetic models of microbial metabolism and essential protein machinery. Specifically, a simulated annealing algorithm is used to navigate through the discrete space of enzyme levels and regulatory structures, while a sequential quadratic programming method is utilized to identify optimal enzyme levels and regulatory kinetic parameters. The framework is demonstrated on a large-scale and chemically-detailed kinetic model of central metabolism in Escherichia coli (wild-type strain W3110) for the optimization of the glucose uptake through the phosphotransferase system (PTS) and serine biosynthesis. Computational results show that by optimally modulating enzyme levels and carefully altering enzyme regulatory properties, a stable 8-fold increase in the PTS uptake rate and a stable 22-fold increase in serine biosynthesis can be achieved. Importantly, substantial improvements in the targeted fluxes can be predicted by manipulating only small subsets of enzyme levels and regulatory structures. For example, the modulation of only three enzyme levels leads to a flux increase, which is almost 50% of the best predictions, and the manipulation of only six enzyme levels already leads to a flux increase of 80% of the best predictions. Remarkably, by optimally modulating 10 enzyme levels, the total central metabolism's enzyme overexpression capability is reached and any further increase in the targeted fluxes can be only possible if the pathway regulation is additionally altered, though at the expense of the loss of the pathway's steady state stability properties (i.e., no steady state can exist or oscillatory regimes may be encountered). The developed framework has also demonstrated a strong synergism between the redesign of control architectures for tightly regulated reaction steps (e.g., phosphofructokinase) and the overexpression of those enzymes which lack any type of regulatory properties (e.g., glyceraldehyde-3-phosphate dehydrogenase). Although the nonlinear optimization predictions are found in a good agreement with Metabolic Control Analysis (MCA) and large control coefficients can be indicative of the corresponding "rate limiting" enzymes and critical feedback regulatory parameters, the non-linear stable optimization predictions could not be found from the MCA alone. The proposed optimization framework thus provides a new versatile modeling strategy and computational tool for systematic optimal elucidation of minimal sets of controlling enzymes and their critical regulatory properties with broad implication in biotechnological studies.
机译:我们引入了混合确定性/随机性优化建模框架,以使用微生物代谢和必需蛋白机制的大规模动力学模型来识别最小水平的酶水平和酶调节结构,以满足显着的生产过剩要求。具体而言,模拟退火算法用于导航酶水平和调节结构的离散空间,而顺序二次编程方法用于确定最佳酶水平和调节动力学参数。该框架在大肠杆菌(野生型菌株W3110)的中央代谢的大规模且化学详细的动力学模型上得到了证明,该模型用于优化通过磷酸转移酶系统(PTS)的葡萄糖吸收和丝氨酸的生物合成。计算结果表明,通过最佳地调节酶水平并仔细改变酶的调节特性,可以实现PTS摄取速率稳定8倍增加和丝氨酸生物合成稳定22倍增加。重要的是,可以通过仅操纵酶水平和调节结构的一小部分来预测目标通量的显着改善。例如,仅三个酶水平的调节导致通量增加,这几乎是最佳预测的50%,而仅六个酶水平的操纵已经导致通量增加了最佳预测的80%。值得注意的是,通过最佳地调节10种酶的水平,可以达到总中枢代谢酶的过表达能力,并且仅在另外改变途径调节的情况下,目标通量的任何进一步增加才有可能,尽管是以损失途径稳态为代价的稳定性(即不存在稳态或可能遇到振荡状态)。所开发的框架还证明了用于严密调节的反应步骤的控制结构的重新设计(例如磷酸果糖激酶)与缺乏任何类型的调节特性的那些酶的过表达(例如甘油醛-3-磷酸脱氢酶)之间的强协同作用。尽管发现非线性优化预测与代谢控制分析(MCA)很好地吻合,并且较大的控制系数可以指示相应的“限速”酶和临界反馈调节参数,但找不到非线性稳定的优化预测仅来自MCA。因此,所提出的优化框架提供了一种新的通用建模策略和计算工具,用于系统地阐明最小限度的控制酶及其关键调控特性,对生物技术研究具有广泛的意义。

著录项

  • 作者

    Nikolaev Evgeni;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号