首页> 外文OA文献 >Estimates For Solutions Of Elliptic Partial Differential Equations With Explicit Constants And Aspects Of The Finite Element Method For Second-Order Equations
【2h】

Estimates For Solutions Of Elliptic Partial Differential Equations With Explicit Constants And Aspects Of The Finite Element Method For Second-Order Equations

机译:具有显式常数的椭圆型偏微分方程解的估计和二阶方程的有限元方法的某些方面

摘要

The classic Lp -based estimates for solutions of elliptic partial differential equations satisfying general boundary conditions were obtained by Agmon, Douglis, and Nirenberg in 1959. In Chapter 2, we rework these estimates to make their dependence on p explicit. It has long been believed that p enters these estimates as a single multiplicative factor of (p [-] 1)[-]1 for p close to 1 and p for p large. This is verified for second-order equations with boundary conditions of order at most one. Poorer results are obtained for more general problems. Local estimates for solutions of homogeneous equations satisfying homogeneous boundary conditions are also established. These are shown to be independent of p. Now consider the finite element approximation of a solution of a second-order elliptic partial differential equation. A typical finite element space that we consider is the Lagrange space of continuous functions which are piecewise polynomials on the elements of an unstructured but quasiuniform triangulation of the domain. As proved by Schatz in 1998, the finite element error is localised in the sense 1 that its L[INFINITY] and W[INFINITY] norms in a region depend most strongly on the behaviour of the true solution at points closest to that region. In Chapter 3, we show that the pattern in the positive norm error estimates continues into the L[INFINITY] -based negative norms. In particular, the error is localised in the negative norms in the same sense that it is in the positive norms. 1 A class of a posteriori W[INFINITY] estimators for the finite element error was inves- tigated by Hoffman, Schatz, Wahlbin, and Wittum in 2001 for the homogeneous Neumann problem. In Chapter 4, we obtain analogous results for an analogous class of L[INFINITY] estimators. Conditions are given under which these are asymptotically equivalent and asymptotically exact. One specific concrete example is provided. In the finite element approximation for the homogeneous Dirichlet problem, the computational domain does not typically match the domain on which the original problem is posed. In Chapter 5, we investigate this issue in conjunction with numerical integration. We find that superparametric elements preserve the 1998 1 weighted L[INFINITY] and W[INFINITY] error estimates of Schatz.
机译:Agmon,Douglis和Nirenberg于1959年获得了满足一般边界条件的椭圆偏微分方程解的基于Lp的经典估计。在第2章中,我们重新研究了这些估计,以明确它们对p的依赖。长期以来,人们一直相信p作为(p [-] 1)[-] 1的单个乘积因子输入p接近1,而p表示p大。对于具有至多一阶边界条件的二阶方程,对此进行了验证。对于更普遍的问题,获得的结果较差。还建立了满足齐次边界条件的齐次方程解的局部估计。这些被证明与p无关。现在考虑二阶椭圆偏微分方程解的有限元逼近。我们考虑的典型有限元空间是连续函数的Lagrange空间,这些连续函数是在域的非结构化但准均匀三角剖分的元素上的分段多项式。正如Schatz在1998年所证明的那样,有限元误差的局域性为1,即其L [INFINITY]和W [INFINITY]范数在一个区域中最强烈地取决于最接近该区域的真解的行为。在第3章中,我们证明了正范数误差估计中的模式延续到基于L [INFINITY]的负范数。尤其是,误差在负范数中的局限性与在正范数中的意义相同。 1 Hoffman,Schatz,Wahlbin和Wittum在2001年针对齐次Neumann问题研究了有限元误差的一类后验W [INFINITY]估计。在第4章中,我们获得了类似的L [INFINITY]估计量类的结果。给出了在这些条件下渐近等价和渐近精确的条件。提供了一个具体的具体示例。在齐次Dirichlet问题的有限元逼近中,计算域通常与原始问题所在的域不匹配。在第5章中,我们结合数值积分研究了这个问题。我们发现超参数元素保留了Schatz的1998 1加权L [INFINITY]和W [INFINITY]误差估计。

著录项

  • 作者

    Cameron Andrew;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号