首页> 外文OA文献 >A STREAM FUNCTION METHOD FOR COMPUTING STEADY ROTATIONAL TRANSONIC FLOWS WITH APPLICATION TO SOLAR WIND-TYPE PROBLEMS.
【2h】

A STREAM FUNCTION METHOD FOR COMPUTING STEADY ROTATIONAL TRANSONIC FLOWS WITH APPLICATION TO SOLAR WIND-TYPE PROBLEMS.

机译:一种计算稳态旋转跨音速流的流函数方法,并应用于太阳风型问题。

摘要

A numerical scheme has been developed to solve the quasilinear form of the transonic stream function equation. The method is applied to compute steady two-dimensional axisymmetric solar wind-type problems. A single, perfect, non-dissipative, homentropic and polytropic gas-dynamics is assumed. The four equations governing mass and momentum conservation are reduced to a single nonlinear second order partial differential equation for the stream function. Bernoulli's equation is used to obtain a nonlinear algebraic relation for the density in terms of stream function derivatives. The vorticity includes the effects of azimuthal rotation and Bernoulli's function and is determined from quantities specified on boundaries. The approach is efficient. The number of equations and independent variables has been reduced and a rapid relaxation technique developed for the transonic full potential equation is used. Second order accurate central differences are used in elliptic regions. In hyperbolic regions a dissipation term motivated by the rotated differencing scheme of Jameson is added for stability. A successive-line-overrelaxation technique also introduced by Jameson is used to solve the equations. The nonlinear equationfor the density is a double valued function of the stream function derivatives. The velocities are extrapolated from upwind points to determine the proper branch and Newton's method is used to iteratively compute the density. This allows accurate solutions with few grid points. The applications first illustrate solutins to solar wind models. The equations predict that the effects of vorticity must be confined near the surface and far away the streamlines must resemble the spherically symmetric solution. Irrotational and rotational flows show this behavior. The streamlines bend toward the rotation axis for rapidly rotating models because the coriolis force is much larger than the centrifugal force. Models of galactic winds are computed by considering the flow exterior to a surface which surrounds a uniform density oblate spheroid. Irrotational results with uniform outward mass flux show streamlines bent toward the equator and nearly spherical sonic surfaces. Rotating models for which Bernoulli's function is not constant show the sonic surface is deformed consistent with the one-dimensional theory.
机译:已经开发出一种数值方案来解决跨音速流函数方程的准线性形式。该方法适用于求解稳定的二​​维轴对称太阳风型问题。假设有一个单一的,完美的,非耗散的,同质和多变的气体动力学。控制质量和动量守恒的四个方程简化为单个非线性二阶偏微分方程,用于流函数。根据流函数导数,伯努利方程用于获得密度的非线性代数关系。涡度包括方位旋转和伯努利函数的影响,并由边界上指定的量确定。该方法是有效的。减少了方程和自变量的数量,并使用了为跨音速全势方程开发的快速弛豫技术。二阶精确中心差用于椭圆区域。在双曲线区域中,为了稳定起见,添加了由詹姆森旋转差分方案激发的耗散项。 Jameson还引入了一种连续线超松弛技术来求解方程。密度的非线性方程是流函数导数的双值函数。从上风点外推速度以确定合适的分支,牛顿法用于迭代计算密度。这样就可以用很少的网格点实现精确的解决方案。该应用程序首先将solutins应用于太阳风模型。该方程式预测,涡度的影响必须限制在表面附近,而远处的流线必须类似于球对称解。无旋流和旋转流显示了这种行为。对于快速旋转的模型,流线会向旋转轴弯曲,因为科里奥利力远大于离心力。通过考虑围绕均匀密度扁球体的表面外部的流动来计算银河风的模型。具有均匀向外质量通量的无旋流结果表明,流线向赤道弯曲,并且接近球形。伯努利函数不恒定的旋转模型表明,声表面的变形符合一维理论。

著录项

  • 作者

    KOPRIVA DAVID ALAN.;

  • 作者单位
  • 年度 1982
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号