首页> 外文OA文献 >Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake
【2h】

Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

机译:温带落叶林冠层气孔导度,蒸腾和蒸发的动态,已通过碳酰硫的吸收得到验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.
机译:气孔电导影响光合作用和蒸腾作用,从而耦合碳和水循环并影响地表大气能量交换。气孔导度对环境的响应主要在叶片尺度上进行测量,理论顶篷模型可用于高级气孔导度,以用于陆地生态系统模型和气候预测。在这里,我们通过两种独立的方法直接在树冠尺度上估算温带落叶林中气孔导度和相关的蒸腾作用:(i)通过热和水蒸气交换,以及(ii)通过吸收羰基硫(OCS)。我们使用涡度协方差方法来测量OCS的净生态系统-大气交换,并且使用通量梯度法将冠层OCS的吸收量与土壤OCS的吸收量分开。我们发现,通过两种方法获得的冠层气孔导度的季节性和昼夜模式是一致的(日变化在±6%以内),这两种方法都得到了验证。冠层气孔导度随冠层上方的光强度线性增加(与叶片尺度相反,其中气孔导度显示出下降的边际增加),否则仅取决于散射光分数,即冠层平均叶对空气水蒸气梯度,和总叶面积。基于气孔导度,我们对蒸发蒸腾量(ET)进行了划分,发现随着生长季节的进行,蒸发量从ET的0增加到40%,其主要原因是土壤温度升高,其次是降雨。与直觉相反,当土壤干燥且空气潮湿时,蒸发量在一年中达到峰值。我们的ET划分方法避免了对不匹配的比例尺或度量类型的担忧,因为ET和蒸腾作用均来自涡度协方差数据。所测试的两个生态系统模型均无法预测观察到的蒸发或蒸腾动力学,这表明需要使用此处提供的ET划分来进一步建立模型并增进我们对碳和水循环的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号