...
首页> 外文期刊>Biogeosciences Discussions >Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake
【24h】

Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

机译:温带落叶林中冠层气孔电导,蒸腾和蒸发的动态,通过羰基硫化物摄取验证

获取原文
           

摘要

Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i)?from heat and water vapor exchange and (ii)?from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6?% diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40?% of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.
机译:气孔电导影响光合作用和蒸腾,从而偶联碳和水循环并影响表面大气能量交换。气孔电导的环境响应主要是在叶子尺度上测量,理论上的冠层模型依赖于陆地生态系统模型和气候预测中的应用升高的气孔电导。在这里,我们通过两种独立的方法直接估计温带落叶林中的气孔电导和相关蒸腾:(i)?来自热和水蒸汽交换和(ii)?来自羰基硫醚(OCS)摄取。我们使用EDDY协方差方法来衡量OCS的净生态系统 - 氛围交换,我们使用助焊剂渐变方法来分离土壤OCS摄取的冠层OCS吸收。我们发现,通过两种方法获得的冠层气孔电导的季节性和昼夜模式(在±6±6℃下),验证这两种方法。冠层气孔电导随着冠层的光强度线性增加(与叶片鳞片形成鲜明对比,其中气孔电导显示下降的边际增加)并且否则仅取决于漫反射率,树冠平均叶 - 空气蒸气梯度,和总叶面积。基于气孔导度,我们分区蒸散(ET),发现蒸发从0到40?%的季节增加,因为日益增长的季节进行,主要通过土壤温度上升并通过降雨来推动。违反思考,在土壤干燥时的一年中蒸发峰值,空气潮湿。我们的ET分区方法避免了对不匹配的尺度或测量类型的担忧,因为ET和蒸腾均来自涡流协方差数据。测试的两个生态系统模型中都不预测观察到的蒸发或蒸腾的动态,表明ET分区,例如提供的ET分区,需要进一步模拟开发和改善我们对碳和水循环的理解。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号