首页> 外文OA文献 >Synthesis of Nanostructured Materials by Etching in Supercritical Carbon Dioxide
【2h】

Synthesis of Nanostructured Materials by Etching in Supercritical Carbon Dioxide

机译:超临界二氧化碳刻蚀合成纳米结构材料

摘要

Supercritical CO₂ (scCO₂) is emerging as a viable and environmentally sustainable platform for nanomaterials synthesis due to its tunable solvent properties combined with low surface tension and viscosity, which allow rapid, non-destructive wetting within small features. However, to advance the utility of this fluid, a more thorough understanding of surface chemistry at high pressures is needed. In this study, the behavior of reactive solids in scCO₂ was examined by etching thin dielectric, metal, and alloy films to determine the fundamental mechanisms controlling the reactions. Models were developed to describe the etching processes and to benchmark scCO₂ with conventional methods. Dielectric SiOₓNy films were etched with an HF/pyridine complex dissolved in scCO₂. The anhydrous etching process resulted in formation of a residual (NH₄) ₂SiF₆ layer that limited transport of reactants to the film and caused a drop in reaction order. Partial removal of the salt was accomplished by sublimation under vacuum. Etching of thin CuO films with hexafluoroacetylacetone (hfacH) in scCO₂ was studied and found to occur via a 3-step Langmuir-Hinshelwood reaction sequence. The kinetic model showed that lower scCO₂ densities favored hfacH adsorption on the CuO surface and that scCO₂ solvation forces lowered the activation barrier for the rate-limiting step. Adding up to 10× the molar ratio of pure H₂O to hfacH nearly doubled the etching rate through formation of a hydrogen-bonded hfacH complex. Both bulk and thin film AgCu alloys were selectively etched in scCO₂ to generate nanoporous Ag structures. As Cu was preferentially removed through selective oxidation and chelation, the Ag atoms conglomerated into successively larger clusters similar to mechanisms reported in aqueous phase dealloying. Supercritical dealloying was observed at Cu compositions below typical parting limits, suggesting enhanced fluid transport in the evolving pores. When using in situ oxidation, the etching reaction was limited by decomposition of H₂O₂. Inverse space image analysis of samples with initial phase domain sizes between 250 - 1000 nm showed that below a threshold of approximately 500 nm, the dealloyed feature size mimicked the starting microstructure. Larger phase domains prohibited surface diffusion of Ag between phases producing a mixture of large and small Ag nanostructures.
机译:超临界CO 2(scCO 2)由于具有可调节的溶剂性能以及低的表面张力和粘度,可在纳米范围内快速,无损地润湿,因此正在成为纳米材料合成的可行且对环境可持续的平台。然而,为了提高这种流体的实用性,需要对高压下的表面化学有更彻底的了解。在这项研究中,通过蚀刻薄的电介质膜,金属膜和合金膜,确定了控制反应的基本机理,研究了scCO 2中反应性固体的行为。已开发出模型来描述蚀刻工艺并使用常规方法对scCO 2进行基准测试。用溶于scCO 2中的HF /吡啶配合物腐蚀SiO 2 Ny介电膜。无水蚀刻工艺导致形成残留的(NH 3)2 SiF 4层,该层限制了反应物向膜的传输并降低了反应顺序。通过在真空下升华来部分除去盐。研究了在scCO 2中用六氟乙酰丙酮(hfacH)蚀刻CuO薄膜的过程,发现该过程是通过3步Langmuir-Hinshelwood反应序列进行的。动力学模型表明,较低的scCO 2密度有利于hfacH在CuO表面的吸附,而scCO 2的溶剂化作用降低了限速步骤的活化势垒。通过形成氢键合的hfacH配合物,纯净的H2O与hfacH的摩尔比加至10倍,几乎使蚀刻速率增加了一倍。在scCO 2中选择性地蚀刻块状和薄膜AgCu合金,以产生纳米孔Ag结构。由于优先通过选择性氧化和螯合去除了Cu,因此与水相脱合金中报道的机理相似,Ag原子聚集成更大的簇。在低于典型分型极限的Cu组成下观察到超临界脱合金,表明在不断演化的孔中流体传输增强。当采用原位氧化时,腐蚀反应受H 2 O 2分解的限制。对初始相域大小在250-1000 nm之间的样品进行的逆空间图像分析表明,低于约500 nm的阈值时,脱合金特征尺寸模仿了起始微观结构。较大的相域会阻止Ag在各相之间的表面扩散,从而产生大大小小的Ag纳米结构的混合物。

著录项

  • 作者

    Morrish Rachel Marie;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号