首页> 外文OA文献 >A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation.
【2h】

A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation.

机译:中子输运方程的完全耦合的蒙特卡洛/离散坐标解。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S(N)) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S(N) regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S(N) is well suited for by themselves. The fully coupled Monte Carlo/S(N) technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S(N) calculation is to be performed. The Monte Carlo region may comprise the entire spatial region (with vacuum boundary conditions) for selected energy groups, or may consist of a rectangular areas that is either completely or partially embedded in an arbitrary S(N) region. The Monte Carlo and S(N) regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S(N) code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subroutines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S(N) code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating the S(N) calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version. The hybrid method is capable of solving forward, inhomogeneous source problems in X - Y and R - Z geometries. This capability includes multigroup problems involving upscatter and fission in non-highly multiplying (k(eff) ≤ .8) systems. The hybrid method has been applied to several simple test problems with good results.
机译:中子输运方程是通过混合方法求解的,该方法迭代地耦合应用确定性(S(N))和随机(Monte Carlo)方法的区域。与以前的混合方法不同,在没有关于几何分离或去耦的假设的意义上,蒙特卡洛和S(N)区域完全耦合。混合方法为解决涉及光学厚度和光学厚度薄弱区域的问题提供了一种新方法,而蒙特卡洛和S(N)都不适合自己。完全耦合的Monte Carlo / S(N)技术包括定义问题的空间和/或能量区域,在其中要执行Monte Carlo计算或S(N)计算。蒙特卡洛区域可以包括选定能量组的整个空间区域(具有真空边界条件),或者可以由完全或部分嵌入任意S(N)区域的矩形区域组成。然后,通过公共角边界通量(使用响应矩阵技术和体积源迭代确定)连接蒙特卡洛和S(N)区域。通过添加专用的蒙特卡洛子例程来计算响应矩阵和体积源,以及链接子例程来进行界面通量迭代,已在S(N)代码TWODANT中实现了混合方法。常见的角边界通量作为内部边界源包含在S(N)代码中,从而使输运通量的求解逻辑保持不变,而经过较小的修改,扩散合成促进剂仍然可以有效地加速S(N)计算。所使用的专用蒙特卡洛例程本质上是模拟的,几乎没有采用方差减少技术。但是,例程已成功地矢量化,与非矢量化版本相比,速度提高了大约五倍。混合方法能够解决X-Y和R-Z几何形状中的正向,非均匀源问题。此功能包括涉及非高度乘法(k(eff)≤.8)系统中的向上散射和裂变的多组问题。混合方法已应用于几个简单的测试问题,并取得了良好的效果。

著录项

  • 作者

    Baker Randal Scott.;

  • 作者单位
  • 年度 1990
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号