首页> 外文OA文献 >Thermally induced deformation and effects on groundwater flow in a discontinuous granite mass.
【2h】

Thermally induced deformation and effects on groundwater flow in a discontinuous granite mass.

机译:不连续花岗岩体中的热致变形及其对地下水流动的影响。

摘要

Existing analytical treatments of groundwater flow have mostly been founded on classical hydrodynamics, that groundwater motion is derivable from a velocity potential. This conception is in contradiction with the principle of conservation of energy, although it conforms with the principle of the conservation of mass (Hubbert, 1940, p. 285; Scheidegger, 1960, pps. 74-75; Bear, 1972, pps. 122-123). This dissertation shows that both principles can be utilized, based on the fact that a force potential at a point is equal to the work required to transfer a unit mass from this point to another point. This potential is given the symbol φ - gh - gz + (p/ρ) and is incorporated in the force field E. This potential is related to the flow field (q) by the anisotropic hydraulic conductivity. This relation forms a solid formulation for the theory of the flow of fluids through fractured porous media. This relation is applied to develop two basic equations. One partial differential equation, representing flow in the fracture, depending on the actual geometry of the fracture and incorporating the anisotropic parameter of the hydraulic conductivity based on the thermal induced stress and the force potential. A second partial differential equation (storage equation) in two-dimensions for non-steady groundwater flow in confined and saturated aquifers. This storage equation incorporates time, hydraulic conductivity and the radial coordinates. It is solved analytically using the Bessel's functions Jₒ and Kₒ. The two equations represent two models. Both the potential and the thermal hydraulic conductivity constitute a coupling between the two models to render the models a thermohydromechanical model. This aspect is the essential theme underlying this work and is implemented through a matrix-fracture system based on the slow flow and the fast flow behavior. The evaluation of the transient parameters including the aperture becomes possible and falls in line with the physics of the problem. This comprehensive analytical model is found to satisfy the transient demands of the mathematical physics. The application of the phenomena observed in the field from different sources and from Stripa Granite, rendered the model realistic and appropriate to the fractured porous media.
机译:现有的地下水流分析处理大多建立在经典流体动力学的基础上,即地下水的运动可以从速度势中得出。这个概念与能量守恒原理相矛盾,尽管它符合质量守恒原理(Hubbert,1940,第285页; Scheidegger,1960,第74-75页; Bear,1972,第122页)。 -123)。本文基于一个点处的力势等于将单位质量从该点传递到另一个点所需的功这一事实,可以利用两种原理。该电势的符号为φ-gh-gz +(p /ρ),并包含在力场E中。该电势通过各向异性的水力传导率与流场(q)相关。这种关系为流经裂隙多孔介质的流体流动理论奠定了坚实的基础。此关系适用于开发两个基本方程。一个偏微分方程,代表裂缝中的流动,取决于裂缝的实际几何形状,并基于热感应应力和力势并入了水力传导率的各向异性参数。二维有限空间和饱和含水层中非稳定地下水流动的二次偏微分方程(存储方程)。该存储方程式包含时间,水力传导率和径向坐标。使用贝塞尔函数Jₒ和Kₒ解析地求解。这两个方程代表两个模型。势能和导热系数都构成了两个模型之间的耦合,从而使模型成为热流体力学模型。该方面是这项工作的基本主题,并通过基于慢流动和快流动行为的基质断裂系统来实现。包括孔径在内的瞬态参数的评估成为可能,并且与问题的物理原理相符。发现该综合分析模型可以满足数学物理的瞬态要求。从不同来源和Stripa Granite现场观察到的现象的应用,使该模型具有现实性,适用于裂缝性多孔介质。

著录项

  • 作者

    Awadalla Awadalla Messiha.;

  • 作者单位
  • 年度 1989
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号