首页> 外文OA文献 >Nanostructured Noble Metal Catalysts udfor Water-Gas Shift Reaction
【2h】

Nanostructured Noble Metal Catalysts udfor Water-Gas Shift Reaction

机译:纳米结构贵金属催化剂用于水煤气变换反应

摘要

The water-gas shift (WGS) reaction (CO + H2O = CO2 + H2) has attracted great research attention because of its applications in adjusting H2/CO ratio for the Fischer-Tropsch process, providing hydrogen-rich streams for fuel cells and processing exhaust gases from automobiles. However, the current WGS process suffers from certain drawbacks of traditional catalysts, such as the toxicity of Fe-Cr-based catalysts and the instability/low space velocity of Cu-based catalysts. In the search for alternative catalysts to overcome these drawbacks, novel metal-based catalysts have been the focal point of most recent studies. The structures and properties of CeO2, on which the rate determining step proceeds (i.e. water dissociation), are believed to fundamentally impact the performance of this catalyst.udIn this project, the objective is to develop a rational design of novel metal-based WGS catalyst which combines high activity with stability against sintering and poisoning. In order to achieve this objective, we have prepared pure and mixed lanthanum-cerium oxide supports, and investigated the effects of these compositions and morphologies to the material’s reducibility and catalytic activity. For the composition, it was found that a proper amount of La doping can improve the WGS activity by tailoring the Ce4+/Ce3+ ratio. When we change the morphology, the CeO2 nanorods were observed to be a better support for Au than the CeO2 nanoparticles. The outstanding performance of the CeO2 nanorods were attributed to its predominantly exposed crystal plane {110}, which is more active to be reduced and to form oxygen vacancies than the {111} exposed by CeO2 nanoparticles. udAfter obtaining the high activity WGS catalysts, we have improved our catalysts against particle sintering and S-poisoning. Surface decoration technique has been applied to prepare layered La2O3/M/CeO2 (M = Au, Pt) with sulfur resistance and regeneration ability during cyclic sour WGS. On one hand, La2O3 has been demonstrated as a protective overlayer against H2S in syngas feedstocks in addition to its stabilizing effect to prevent Au nanoparticles sintering. On the other hand, reducible CeO2 supports enable complete regeneration of sulfur-poisoned Pt catalysts due to the strong metal support interaction (SMSI).
机译:水煤气变换(WGS)反应(CO + H2O = CO2 + H2)由于其在调节费-托工艺中的H2 / CO比,为燃料电池和工艺提供富氢流方面的应用而引起了极大的研究关注。汽车废气。然而,当前的WGS方法具有传统催化剂的某些缺点,例如Fe-Cr基催化剂的毒性和Cu基催化剂的不稳定性/低空速。在寻找替代催化剂以克服这些缺点的过程中,新型金属基催化剂一直是最新研究的重点。速率确定步骤(即水离解)在其上进行的CeO2的结构和性质被认为从根本上影响了该催化剂的性能。 ud在该项目中,目标是开发新颖的基于金属的WGS的合理设计。这种催化剂兼具高活性和对烧结及中毒的稳定性。为了实现这一目标,我们制备了纯的和混合的镧铈氧化物载体,并研究了这些成分和形态对材料的还原性和催化活性的影响。对于该组合​​物,发现适量的La掺杂可以通过调整Ce4 + / Ce3 +比例来改善WGS活性。当我们改变形态时,观察到CeO2纳米棒比CeO2纳米颗粒更好地支持了Au。 CeO2纳米棒的出色性能归因于其主要暴露的晶面{110},与CeO2纳米颗粒暴露的{111}相比,它更易于还原并形成氧空位。 ud在获得高活性的WGS催化剂后,我们对催化剂进行了改进,以防止颗粒烧结和S中毒。已经应用表面装饰技术来制备层状La2O3 / M / CeO2(M = Au,Pt),其在循环酸性WGS中具有抗硫性和再生能力。一方面,La2O3除具有防止金纳米颗粒烧结的稳定作用外,还被证明是合成气原料中抗H2S的保护层。另一方面,由于强的金属载体相互作用(SMSI),可还原的CeO2载体能够完全再生硫中毒的Pt催化剂。

著录项

  • 作者

    Liang Shuang;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号